
Getting started with CYPEX 2.1
Build applications faster

Created by the
CYPEX development team

2022-10-12

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 1 | 230

Table of contents

The life-cycle of a CYPEX application 11

CYPEX terminology and samples 13
CYPEX “entities” 13
CYPEX “queries” 13
States and state changes 13
Database permissions 15
Writing clever relational models 15

Using single column primary keys 15
Handling NULLs wisely 16
Circular dependencies 16
Using data types cleverly 17
Handling “interval” fields 17
Performance and efficiency 17
Using partitioning 18
Processing FDWs (Foreign Data Wrappers) 19

Your first application 22
Step 1: Creating an SQL model 22

Sample data 22
Step 2: Defining default lookups 24
Step 3: Defining a query 26
Step 4: Predicting an application 26

Trying it all out 28

Building a dashboard 29

Creating forms 31
Making forms more sophisticated 32
Working with tabs 35

Incremental changes 37
Incremental rendering 37
Changing query definitions 38

Adding columns to queries 38
Changing columns of a query 39
Dropping queries 40

Adding pages to an application 41

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 2 | 230

Creating workflows 42

Image and file handling 45

Handling GIS data 46
GIS apps in action 47

Calling server side code 50

Scheduling jobs and notifications in CYPEX 53
pg_timetable architecture 54
Scheduling jobs 55
Handling notifications 55

pg_timetable: Advanced job scheduling 57
Asynchronous execution 57
Notifications 58
Sending emails 58
Job scheduling 60

Tracking history 60

CYPEX GUI release management 62

Changing the layout of your application 65

CYPEX built-in expressions 66
CYPEX Custom Expressions 69

Basic “custom expression” concepts 69
Accessible JavaScript objects 70

Location 70
location.pathname 70
location.queries 70

page 70
page.id 70
page.loadedAt 70

elements 70
element 71

element.i18n 71
props 71
lodash 71

Chart Filter as “Custom Expression“ 71
JavaScript 73

Basics 73
Literal values 73

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 3 | 230

Expressions 73
Inline conditionals 73
Modern JavaScript features 73
Available expressions as table child 74

1. Access a specific field of the current row 74
2. Access all data 74

Accessing Own Element Data 74
Accessing Other Elements Data 74
Accessing Props 74
Accessing Element Translations 74
Accessing The Location Object 74
Accessing The Page 74

Displaying elements conditionally 75
Hiding a button conditionally 75

List of element interfaces : 77
Data Display 77

element.color 77
element.data 78
element.error 79
element.formattedData 79
element.identifier 79
element.loading 80

i18n 80
i18n.label 80
i18n.text or elements.<markdown_text_id>.i18n.text 80

Pie / Bar / Line Chart 81
element.data 81
element.error 81
element.loading 81
element.selected 81
element.i18n.title 81

Table 82
element.data 82
element.error 82
element.limit 82
element.loading 82
element.loadingParams 83

element.loadingParams.filter 83
element.loading Params.limit 83
element.loadingParams.offset 83

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 4 | 230

element.loading.order 83
element.metadata 83

element.metadata.canDelete 83
element.metadata.canUpdate 84
element.metadata.rows 84

element.metadata.rows[0].canDelete and canUpdate 84
element.metadata.rows[0].currentStateI18n 84
element.metadata.rows[0].stateChanges 84
element.metadata.rows[0].stateName 84

element.nextFilter 84
element.NextPageAvailable 84
element.offset and element.order 85
element.orderIndexed 85
element.params 85
element.references 85
element.searchInputValue 86
element.selected 86

Table columns 87
Props object 88

props.data 88
props.key 88
props.metadata 88

props.metadta.canDelete & props.metadata.canUpdate 88
props.references 89

props.references.id 89
Form 90

element.data 90
element.errors 90
element.hasChanges 91
element.identifier 91
element.isValid 91
element.loadState and elements.saveState 91
element.inProgress 91
element.originalData 91
element.touched 91

Conditional Container 92
element.visible 92

Tabs 92
element.indexSelected 92

Inputs 92

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 5 | 230

element.value 92
element.disabled 92
element.touched 93
element.errors 93

Autocomplete Input 93
element.loadingOptions 93
element.options 94
element.optionsError 94
element.rawOptions 94
element.rawValueObject 94
element.searchInputValue 94
element.valueObject 94

File Input & Multiple File Input 94
element.file 94
element.loading 94
element.metadata 95
element.metadataError 95
element.uploadError 95
element.files 95
element.metadata 96

Subform table 96
Fields 96
Google Maps 96

element.data 96
element.loading 96
element.error 96
element.selected 96

Action Button 97
element.clickedCount 97
element.lastClicked 97

Call Button 97
element.error 97
element.loading 97
element.result 97

Internal Link Field 98
element.data 98
element.error 98
element.hasStarted 98
element.identifier 98
element.loading 98

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 6 | 230

Number Field 98

CYPEX administration panel 99
CYPEX dashboard 100
CYPEX Applications 101

Create application 102
Application list 103

Application List icons 104
Database 108

Schema overview 109
Available table detail icons 109

Context Menu Table 111
Generate Default Query 111
Understanding CYPEX workflows 113

Creating a new workflow 113
Using the workflow editor 114
verview of the workflow editor action items 115
State changes 116
Edit a State 118
Inside the application 118
Workflow symbols inside the table context menu 119

Default Lookup 119
Auditing 120
Table details 121

Entities 123
Queries 124

Authentication 125
Users 126

Create user 127
Edit User 127

Roles 128
Create Role 128

Login Settings 129
LDAP Configuration 132
Repository Configuration 136

Audit 136
Tables 137
Users 138

File Management 140
Upload Files 141

Data API 142

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 7 | 230

Add-Ons 143
Repository applications 144

Available CYPEX extensions 148
Extension: telegram_posts 148
Extension: event_logs 149
Extension: blog_schedule 150
Extension: newsletter 151
Extension: webserver_logs 152
Extension: twitter_posts 153
Extension: clicks_adwords 154
Extension: calories 155
Extension: periodic_table 155
Extension: speeding_ticket 156
Extension: oil_production 156
Extension: room_bookings 157
Extension: rental_car 158
Extension: sensor_timeseries 159
Extension: agents_customers_orders 160
Extension: playlist 160
Extension: persons_and_friends 162
Extension: unit_conversions_list 163
Extension: simple_addresses 166
Extension: country_list 167
Extension: basic_types types 168
Extension: currency_list 169
Extension: interest_rates 170
Extension: room_booking 171
Extension: inventory 172
Extension: training_courses 173
Extension: gps_tracking 174
Extension: exchange_rates 175
Extension: team_list 176
Extension: jour_fix 176
Extension: conference_sponsoring 178
Extension: todo_simple 179
Extension: stock_ticker 180
Extension: consulting_prices 181
Extension: rating_agency 182
Extension: bank_account 183
Extension: simple_accounting 185

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 8 | 230

Extension: support_customer 186
Extension: products_simple 187
Extension: salutations 188

Application Designer 189
Section: Main Menu - Menu Entries 190

Create New Menu Entry 190
Section: Main Menu - Pages 191

Create New Page 191
Section: Main Menu - Current page 192

MetaElements: Hidden fields 192
Section: Main Menu - Queries 194

Query Details 195
Section: Main Menu - History 196

History 196
Releases 196

Section: Main Menu - Style 198
Section: Top bar 199

Section: Top bar - Icons 200
Section: Tool box 201

CYPEX internals 202

CYPEX software architecture 202
Delivering CYPEX 202

CYPEX GUI (“renderer”) 203
CYPEX API 204
CYPEX data API 205
CYPEX database 205

Upgrading CYPEX 205
CYPEX internal data structure 206

Table cypex_api_internal.t_user 208
Table t_file, t_filegroup, t_file_type: 208
Table t_language 208
Table t_module 208
Table t_object 208
Table t_object_field 209
Table t_object_state 209
Table t_object_view 209
Table t_object_view_field 209
Table t_state_change 210
Table t_state_requirement 210

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 9 | 230

Table t_text 210
Table t_ui 210
Table t_ui_history 211

Security-related data structures 211
Table t_user 211
Table t_user_ldap 212
Table t_user_integrated 212
Table cypex_log.t_user 212

Application structure 213
State machine internals 214

User management 215
Understanding the CYPEX user concept 216
Changing Password 217

Changing our own password 217

Known bugs and pending improvements 220
Security features 220

Ability to create nested roles 220
Provide an overview of permissions 220

View handling 220
CREATE VIEW … WITH CHECK OPTION 221
Views and dependencies 221
Security barrier views 221

Data type handling 221
GIS data handling 221
ER-model related issues 225

Missing model creation 226
Workflows and foreign keys 226
Pre-func and post-func enabled workflows 226

Graphical user interface 226
Multiple file uploads 227
Handling of password fields 227

Glossary 227

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 10 | 230

CYPEX: Basic concepts
In this chapter, you’ll learn about important basic concepts needed to
understand the use of CYPEX. You’ll briefly be guided through these essential
concepts. Once you’re equipped with some basic understanding, we’ll build a few
applications, guiding you to success step-by-step.

The life-cycle of a CYPEX application
The first thing to understand is the life-cycle of a CYPEX application.
Here is a primary overview of how things work:

The life of a CYPEX application begins by creating a relational model. This model
will form the basis of every application. You can start by deploying your tables as
usual.

After that, it’s time to enter the world of CYPEX: Go to the model builder and
organize your relational model (more on how to do that in “CYPEX terminology
and samples”). Once the workflow and permissions have been added, you can
predict a default application with CYPEX.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 11 | 230

This basic predicted application is fully functional and can be shown to the end
user. You can gather feedback to catch some potential misunderstandings early
on in the customer communications process. Your default application can now be
adjusted to the client’s needs by adding charts, changing the layout, or making
other minor changes.

Keep in mind that your entire CYPEX application basically consists of a set of
configuration tables which is used to compile a JSON document. Your browser
will get this JSON document and render it. The advantage of this approach is that
your entire application can be transferred from one PostgreSQL database to
another, using a simple dump / restore. There are no external dependencies.

If you’re using standard PostgreSQL replication, your CYPEX application will be
replicated just like any other data. No additional backup processes are needed.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 12 | 230

CYPEX terminology and samples
This section will describe the most important aspects of CYPEX terminology.

CYPEX “entities”
In CYPEX you use existing SQL models to build new and powerful applications.
The first term we need to discuss is the idea of an “entity”. We use the same
semantics as in a standard relational model: an entity is a table which is tracked
by CYPEX. All tracked entities will be part of the GUI prediction which is made
based on the data structure. If an entity isn't tracked by CYPEX, it won’t be
included in that prediction.

It’s important to understand that you do not work directly with entities. You use
an abstraction layer between entities and what CYPEX sees.

CYPEX “queries”
As already stated, entities are essentially tables in a relational model. However, this
isn't what you work with in the CYPEX GUI. Usually, a table doesn’t contain data
the way you need it in the GUI. You need to define a query which will be in charge
of fetching data from the table and then sending data to the end user. A query
can be a subset of columns, a join or any other complex SQL statement needed to
pre-preprocess data. In short: A query processes the data so that it can be shown
in the GUI.

States and state changes
Workflows are the next step once the initial relational model has been built. The
following terms are relevant:

● State columns
● States
● State changes

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 13 | 230

Let’s take a look at an example: An offer might follow a typical workflow. It's
created, edited, sent to the client and, hopefully, signed. An object has an optional
“state column” which is only allowed to contain valid state entries (in our case
“accepted”, “rejected”, “sent” and “created”). Changing between 2 states is what is
called a “state change” - it's any kind of action associated with an object.

Please note that states and state changes occur on the entity - not on the query -
level. States are deeply associated with the underlying database model.

States and state changes can be either enforced or non-enforced. In case of
enforced state changes, CYPEX will create triggers on the underlying tables to
make sure that only valid changes can be made. Usually, enforced state changes
should be chosen because they make sure that a data model cannot contain
faulty data. However, in some cases it might also make sense to work with states
that aren't enforced by CYPEX. This is especially true if the underlying data model
must not be modified for some reason.

An entity may have either no state column, or one state column. Combined or
multiple state columns aren't supported.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 14 | 230

Database permissions
Database permissions are of great importance and are usually assigned on the
query level to ensure that tables remain mostly unchanged.

CYPEX offers visual tooling to define these query permissions. However, setting
permissions might not be enough. PostgreSQL supports “Row Level Security”
which is an easy way to filter rows: A table might contain 1 million people (500.000
women and 500.000 men). User A might only be allowed to see women while
user B is only allowed to see men. Depending on who you are, PostgreSQL will
only return the subset of data you are permitted to see. Row-Level-Security can
therefore be seen as a kind of mandatory filter added for a user. In case you are
using RLS (= Row Level Security), make sure that your policy is assigned to
PUBLIC rather than to a normal user. The reason for this is that a view will only
honour an RLS policy if it's assigned to “public”. This is because views in
PostgreSQL are basically a separate security context. Assigning policies to the
wrong entity on PostgreSQL is a fairly common mistake.

Permissions heavily impact default rendering. In CYPEX a GUI is created for a user
or a group of users. In case a group of users does not have access to a query, the
GUI won’t contain those elements at all. In other words: Permissions drive the way
default rendering is done at the most basic level. This also implies that 2 people
accessing the same database might see totally different applications,
depending on their permissions and security settings.

Writing clever relational models
As previously stated, a relational model is the foundation of every CYPEX
application. However, not all relational models are created equal. Some are more
suitable for application prediction than others. In this section, you’ll learn more
about how to write suitable relational models and what to avoid.

Using single column primary keys
CYPEX contains the concept of “identity columns”. If you want to build an online
form, CYPEX has to uniquely identify a row to ensure that the right things are
updated. Identity columns usually represent some kind of ID. It's important to
understand that these keys must be single-column keys. In order to manage
complexity and maintain good performance, CYPEX doesn’t handle composite
keys. It therefore makes sense to ensure that every table (entity) has a synthetic
key. Single-column keys aren't only important if you want to create forms. They

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 15 | 230

can also be important if you’re creating a dashboard: You can’t click into a chart if
you can’t easily identify what it was that you clicked on.

We therefore suggest that you ALWAYS add an ID column (even if it's not strictly
necessary), for easier handling.

Handling NULLs wisely
NULLs are a bit tricky. Often, a web GUI can’t distinguish between NULL and
empty strings. This is especially difficult in the case of checkboxes.

The following types of modelling should therefore be avoided:

...
column boolean NOT NULL,
...

In these cases, if CYPEX does not see any input, it sends NULL to the backend. This
is also true for text fields. In order to be consistent across the platform, the same
behavior is used for boolean fields.

Circular dependencies
Circular dependencies aren't perfectly suited for web applications. The first
question is: What is a circular dependency? Here’s an example:

test=# CREATE TABLE a (id int UNIQUE);
CREATE TABLE
test=# CREATE TABLE b (id int UNIQUE);
CREATE TABLE

In this case we have two tables. If these two tables reference each other, we’ll end
up with a problem:

test=# ALTER TABLE a ADD FOREIGN KEY (id)
REFERENCES b (id);

ALTER TABLE
test=# ALTER TABLE b ADD FOREIGN KEY (id)

REFERENCES a (id);
ALTER TABLE

The problem here is that you can’t insert data into any table without violating the
other table’s constraint:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 16 | 230

test=# INSERT INTO a VALUES (1);
ERROR: insert or update on table "a" violates foreign key constraint
"a_id_fkey"
DETAIL: Key (id)=(1) isn't present in table "b".
test=# INSERT INTO b VALUES (1);
ERROR: insert or update on table "b" violates foreign key constraint
"b_id_fkey"
DETAIL: Key (id)=(1) isn't present in table "a".

This problem can be solved by marking a constraint as INITIALLY DEFERRED or
marking the entire transaction as such. However, CYPEX changes the content of a
query. That means that if you want to use circular dependencies, you’ll need to
adjust the code behind the scenes on your own. However, it’s usually better to
avoid circular dependencies entirely, if possible.

Using data types cleverly
Data types are the backbone of every relational model. CYPEX maps data types
used by the relational model to GUI elements. Be aware that data types used by
extensions are generally mapped to “text” because CYPEX does not support
obscure types.

Handling “interval” fields
Intervals are basically treated as text fields by CYPEX. This is important, as CYPEX
does not contain full support for this data type yet.

Performance and efficiency
Mind that CYPEX enables you to create applications quickly and efficiently - that
does not mean that applications will perform “quickly” by default. If you want to
achieve good database performance, work through the following CYPEX
performance recommendations:

● Index columns you are searching on
● Index both sides of a join
● Enable pg_stat_statements
● Deploy proper pgwatch2 monitoring
● Materialize large aggregations
● Avoid expensive live queries

CYPEX tries to avoid expensive queries whenever possible. Tables will only fetch a
handful of rows - which greatly improves performance. However, if a table is fed
by a fairly complicated query, performance might still suffer, particularly if

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 17 | 230

indexing isn't done properly. For that reason, we highly recommend that you
frequently check up on pg_stat_statements.

Furthermore, we recommend testing CYPEX applications using representative
amounts of data to ensure that performance is close to what you can expect in
production.

Using partitioning

Many people use PostgreSQL partitioning. It's important to understand how this
feature can be used in CYPEX. The following listing shows how partitions can be
created:

BEGIN;

CREATE TABLE t_timeseries (
d timestamptz NOT NULL DEFAULT now(),
sensor text NOT NULL,
temperature numeric NOT NULL

) PARTITION BY RANGE (d);

CREATE TABLE t_timeseries_2020
PARTITION OF t_timeseries
FOR VALUES FROM ('2020-01-01') TO ('2021-01-01');

CREATE TABLE t_timeseries_2021
PARTITION OF t_timeseries
FOR VALUES FROM ('2021-01-01') TO ('2022-01-01');

CREATE TABLE t_timeseries_2022
PARTITION OF t_timeseries
FOR VALUES FROM ('2022-01-01') TO ('2023-01-01');

COMMIT;

Please note that the model builder is only going to show the parent table in this
structure:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 18 | 230

Keep in mind that not all versions of PostgreSQL behave the same way when
dealing with partitions. This is also true for index creation. You need to understand
how your version of PostgreSQL behaves when it comes to partitioning and index
creation. Thus we recommend carefully testing the application, and limiting the
use of workflows in combination with partitions in general. Future versions of
PostgreSQL may exhibit further differences, so it’s important to stay up-to-date on
the changes in partitioning behavior in the latest version.

Processing FDWs (Foreign Data Wrappers)

CYPEX supports PostgreSQL-style FDWs. However, there are some special cases
which have to be taken into account when using FDWs. You should keep several
limitations in mind:

● No support for workflows
○ Unable to enforce constraints on the remote side
○ Unable to deploy reliable triggers
○ Can’t rely on constant data structures on the remote side

● No support for advanced auditing
○ Unable to reliably track changes on the remote side

● No support for reliable foreign keys

Therefore the only useful situation is to use FDWs as data sources, or as target
tables (if this is supported by the FDW in general).

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 19 | 230

In the model builder, FDWs are shown as normal tables:

In this case, a FDW was created as follows:

CREATE EXTENSION postgres_fdw;

CREATE SERVER pgserver
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'localhost', dbname 'cypex');

CREATE USER MAPPING FOR public
SERVER pgserver
OPTIONS (user 'postgres');

CREATE SCHEMA sample;

IMPORT FOREIGN SCHEMA public
FROM SERVER pgserver
INTO sample;

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 20 | 230

SELECT * FROM sample.t_vendor;

More features will be added in this area in future versions of CYPEX.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 21 | 230

Sample applications
After this brief introduction, it’s time to create your first sample applications. We’ll
show you a set of basic apps which will guide you through the process. Every
application will allow you to dive deeper into CYPEX and to learn more about its
features.

Your first application
Let’s dive headlong into the first CYPEX application. The goal is to create a form, as
well as a dashboard showing a report.

Step 1: Creating an SQL model
The first step is to create an SQL model. In our example, we’ll create a “sales”
schema with couple of tables, initially populated with some of sample data:

Sample data

To demonstrate how CYPEX works, we have compiled a data set. We’ll use the
following tables and permissions to define queries:

cypex=# GRANT USAGE ON SCHEMA public TO cypex_user;
cypex=# GRANT whoever TO authenticator;

cypex=# SET SESSION AUTHORIZATION cypex_admin;

cypex=# CREATE TABLE t_currency (
id serial PRIMARY KEY,
currency_name text NOT NULL

);
CREATE TABLE
cypex=# INSERT INTO t_currency (currency_name)

VALUES ('USD'), ('EUR'), ('CHF'), ('GBP');
INSERT 0 4
cypex=# SELECT * FROM t_currency;
id | currency_name

----+---------------
1 | USD
2 | EUR
3 | CHF

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 22 | 230

4 | GBP
(4 rows)

The second table shows sales amounts::

cypex=# CREATE TABLE t_sales (
id serial PRIMARY KEY,
currency_id int REFERENCES t_currency (id),
t date,
amount numeric(10, 2)

);
CREATE TABLE

cypex=# INSERT INTO t_sales (currency_id, t, amount)
VALUES (1, '2022-01-04', 3243.45),

(1, '2022-01-05', 4324.43),
(2, '2022-01-09', 1242.98),
(2, '2022-01-10', 985.34),
(2, '2022-01-11', 684.32);

INSERT 0 5
cypex=# SELECT * FROM t_sales;
id | currency_id | t | amount

----+-------------+------------+---------
1 | 1 | 2022-01-04 | 3243.45
2 | 1 | 2022-01-05 | 4324.43
3 | 2 | 2022-01-09 | 1242.98
4 | 2 | 2022-01-10 | 985.34
5 | 2 | 2022-01-11 | 684.32

(5 rows)

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 23 | 230

This is a 1:n relationship. The model builder will display the new model:

You see above that currency_id references t_currency.id.

NOTE: It‘s important to grant permissions to “authenticator”, otherwise the login
process won’t work as desired.

Step 2: Defining default lookups
CYPEX supports “default lookups”. What does that mean? In a relational model,
foreign keys are quite common. The problem is: If you want to display a table
containing a foreign key, you might not be interested in seeing every single type
of ID displayed. Let’s take a look at our “t_sales” table as shown in the model
builder:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 24 | 230

What we really want to display in our form is the ID, the name of the currency, a
timestamp and the amount. To make sure that the GUI easily resolves the key in
the manner desired, click on the currency table and select “default lookup”. There
you can define how to resolve an ID pointing to this table. CYPEX will
reverse-engineer the model, and will always display the name instead of the plain
ID.
Here’s what the lookup form looks like:

Once you’ve saved this info, the model knows how to resolve ID’s in an elegant
way. Note that this default resolution happens at the model level.

In the end, the application generated will display the content of the default
lookup table:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 25 | 230

Step 3: Defining a query

After defining default lookups to make life easier, let’s move forward and define a
query. To create a query click on the “+” icon in the queries menu on the right side
of the page:

What you’ll find is an SQL editor as well as options to test your queries.
The second half of this form is all about permissions:

You can visually define who is allowed to perform which operation(s) on this
query. Note that in some cases, a trigger will be needed to handle insertions.
Therefore, read-only queries such as reports should only have SELECT
permissions.

Step 4: Predicting an application
Now that you’ve defined your first data model, you can create your first
application. Go to the model builder and choose “Applications” in the menu on
the left. Then press the “Generate” button.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 26 | 230

CYPEX will open the app generation form:

Your application needs a name - that name is going to be the title of the entire
application. What’s also important is the owner: you'll render the app for this GUI,
so make sure the owner of the GUI has all the permissions needed to handle
the underlying data.
Finally, decide which queries default pages will be generated for, when rendering
the application. What is the logic here? Suppose you have 10 queries. You might
produce 3 applications (each of them using 5 queries). Keep in mind: you can
build as many CYPEX apps as you want on top of those queries.

After hitting the “generate” button, you have your first CYPEX app:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 27 | 230

Trying it all out

Click on the button in the middle and execute the app. You’ll see one menu entry,
and one table which has been generated for us by CYPEX:

Welcome to CYPEX.
You have just built your first application.

Congratulations!

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 28 | 230

Building a dashboard
So far, the default rendering process has created a menu entry and a table.
However, what we really want is a dashboard. The goal is to modify the
application and add some charts.

Click the “edit application” button in the application. The application will then be
in edit-mode which allows you to change all graphical elements:

In this case, we’ve used drag & drop to add a pie chart to the app. The important
part is the configuration of the data sources: Select the “query” in “source
query” to tell CYPEX which data source to use.

Then select the axis needed by the pie chart. You can decide which titles to use,
what type of chart you want, and a whole lot more. The basic idea is the same for
all the types of GUI elements which can be added.

Once the changes are done, save them:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 29 | 230

The “save” function will tell you what has been changed and release a new version
of the GUI.

You can add as many widgets as you want. Pie charts, line charts, bar charts -
CYPEX has them all. The underlying concept explaining how to configure things is
the same for almost all charts. Only maps require a different infrastructure - (geo
JSONs) but more on that later.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 30 | 230

Creating forms
It’s easy to create a form for an entity. CYPEX allows you to create a “default query”
for this purpose.

The main question is: What is a default query? In CYPEX you don’t usually change
tables directly, rather you create a view behind the scenes. What happens here is
that the default query will be a “SELECT * FROM tab”. The advantage is that you
can nicely abstract user permissions that way and separate the underlying data
from the access layer.

In order to create a default query, click on a relation and select the first entry
(“Generate Query”).

All you have to configure in this case are the title and the permissions. Note that
in order to create a new form, the user needs INSERT or UPDATE permissions.
Otherwise, those forms will not be generated by default.
In our example, we’ve created default queries for both tables:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 31 | 230

As you can see, the new queries aren't accessible when rendering the new
application. Incremental rendering is also possible. Alternatively, you can add new
queries and build their forms manually. However, it's generally easier to use the
rendering infrastructure which automatically creates all necessary forms.
After generating the application, you see additional menu entries:

It’s important to notice that the permissions set before ensured that the table
including the edit buttons was generated. Modify a row:

What’s important to note here is that the default currency is displayed in the
drop-down menu. The reason for that is that we’ve defined a default resolution for
this column. Therefore CYPEX already knows how to handle this field.

Making forms more sophisticated
So far, you’ve seen how to generate simple forms. Each input field is represented
as a text field. However, this might not be desirable at all. Let’s take a look at the
following sample data structure:

BEGIN;

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 32 | 230

CREATE TABLE t_vendor (
id serial PRIMARY KEY,
name text NOT NULL

);

INSERT INTO t_vendor (name)
VALUES ('Mercedes'), ('Opel'), ('Tesla');

CREATE TABLE t_car (
id serial PRIMARY KEY,
model text NOT NULL,
horsepower int CHECK (horsepower > 0),
vendor_id int REFERENCES t_vendor (id)

ON UPDATE CASCADE
ON DELETE CASCADE

);

INSERT INTO t_car (model, horsepower, vendor_id)
VALUES ('A180', 136, 1), ('A200', 163, 1),

('Mokka', 96, 2), ('Insignia', 174, 2);

GRANT ALL ON t_vendor, t_car TO authenticator;

COMMIT;

What we have here are vendors and cars. The parts to focus on are: a.) the
“horsepower” field as well as b.) the foreign key. You’ve already learned that in
order to build smarter forms, you can use default resolutions. In order to achieve
that, go to the model builder, then click in “Default lookup” on the vendor table.
Select the name column. Then, generate the default queries for both entities.
Now CYPEX knows that it has to ask for text input rather than ID’s.

Now let’s render the application:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 33 | 230

Select both queries you want to render and click the “Generate” button. Start the
application, select any car you want to modify, and start the edit mode. What
you'll see is a text field for the model (which is fine), a text field for the horsepower
value and a drop-down created by the default resolution. Now, replace the text
field for the horsepower entry with a slider. The way to do this is to select a slider
from those elements, drag them in and voilà, you’re ready to configure the
element. You need to assign the same data sources to the slider. Select the same
field as in the old horsepower field and configure the remaining variables you
want to see:

In my example, the slider will range from 0 to 1000. Then you can delete the old
element and arrange these elements exactly the way you want them to be
arranged:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 34 | 230

Save the application, and the form is ready to use:

You have successfully replaced a simple text input with a more advanced
element.

Working with tabs
Sometimes you want input forms or tables to be in tabs. CYPEX provides this
feature and allows you to easily add tabs . Drag and drop a “Tabs” element into
your WYSIWYG editor.
By default, your element will be empty so you have to add tabs to it:

To do that, check out the configuration menu and add tabs. Once the tabs are
created, you can fill them with elements of your choosing:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 35 | 230

In this case, a table has been added to the GUI.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 36 | 230

Incremental changes
Data models can change over time, which means default rendering can become
a problem. Imagine that you have an existing application and you want to extend
it with additional entities, queries, and so on.

CYPEX supports changing data structures. Let’s outline two relevant cases:

● Incremental rendering
● Changing query definitions

Incremental rendering

Building forms by hand after default rendering is done can be quite cumbersome
and slow.

CYPEX supports incremental rendering. Once an application is done, you can
easily create new queries:

Once you have created the query, you can jump to the applications overview in
the model builder. Select the second icon (“Generate and add pages”):

Then tell CYPEX which queries you want to add to the application:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 37 | 230

In this case the “horsepower” query will be added as a new menu entry and thus a
new table:

Note that the data source will be available for other elements as well.

Changing query definitions
There are other changes which have to be addressed. It often happens that a
query definition has to be changed. Such changes are partially supported.

Let’s take a more detailed look.

Adding columns to queries

Adding a column to a query is always possible. Go to the model builder and
modify the query accordingly. Note that the query editor uses the “real”
PostgreSQL parser to check if the syntax is correct. You can therefore rely on the
fact that the query is OK, as long as you can actually save it.

Here’s a possible modification which works for the previous example:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 38 | 230

Make sure that you do not change column names, because doing so may
break your frontend application. Instead, add columns.

Changing columns of a query

If you want to change a query, life is a bit more complicated. Again, it's not
recommended to change column names.
However, what is possible is changing the definition of a field without changing
the data type. What does that mean? Consider:

(count(*) + 1) AS count

It's perfectly feasible to change “count(*)” to “count(*) + 1”. It does not change the
data type, nor does it change the column definition. However, the following
change will result in an error:

count(*)::numeric(100, 10) AS count

Note that the query is correct from an SQL point of view, but the data type will
change, which isn't allowed:

cannot change data type of view column "count"
from bigint to numeric(100,10)

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 39 | 230

Instead of changing view definitions, it might make sense to create a new view,
providing the data you need. It has the advantage of not breaking your existing
application.

Dropping queries

Dropping a query is easy and can be done in the model builder directly. However,
it will have implications and it might indeed break your application. The following
screenshot shows what happens when a query is dropped:

Changing the application becomes necessary in this case, as the underlying data
source is lost.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 40 | 230

Adding pages to an application
Sometimes you might want to add a new page to an application. To do that, go to
edit mode and add a new page:

CYPEX will produce an empty page, which you can then use to add elements later
on:

In this case, you can see two elements have been added: a markdown field, as
well as a code window.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 41 | 230

Creating workflows
After successfully creating this first application, it’s time to move forward and dive
into workflows. The goal of the next application is to create a TODO list which can
be modified by end users.

Here’s some sample data:

BEGIN;

CREATE ROLE todo_owner LOGIN;
GRANT todo_owner TO authenticator;

CREATE SCHEMA todo AUTHORIZATION todo_owner;

CREATE TABLE todo.t_todo
(

id serial PRIMARY KEY,
tstamp date DEFAULT now(),
todo_item text NOT NULL,
status text

);

INSERT INTO todo.t_todo (tstamp, todo_item, status)
VALUES
('2021-03-04',' Do the laundry', 'created'),
('2021-03-06',' Cut the grass', 'accepted'),
('2021-03-09',' Eat a steak', 'success'),
('2021-03-12',' Slaughter a chicken', 'rejected');

COMMIT;

For the sake of simplicity, the TODO list consists of just one table. What is
noteworthy here is the last column: The status informs us about the state of an
object. A task might have succeeded, failed or it might have been rejected.

You can both enable workflows and configure them in the model builder:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 42 | 230

The workflow can easily be drawn using drag-and-drop functionality.

The end result will reflect the changes and allow only the changes defined in the
workflow.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 43 | 230

Finally, create the query permissions and generate the application:

The application is rendered normally. The magic is in the state or status column:
CYPEX has generated a dropdown which allows us to make changes.

Note that you can’t just select any value from the drop-down. If a row is in the
“accepted” state, you can only either fail, or complete the task. Once you are in a
“completed” or “rejected” state, the workflow is over - you can’t change the data
anymore.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 44 | 230

Image and file handling
CYPEX supports the integration of external images. Add an image element to
your desired page and click on the element for configuration: You may add the
desired link to the image, resize the element and define whether the picture can
be resized or stretched.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 45 | 230

Handling GIS data
CYPEX supports GIS (Geographical Information Systems) data. However, in order
to use GIS data in CYPEX, there are some things which have to be taken into
consideration.

Let's take a look at a sample table:

cypex=# CREATE EXTENSION postgis;
CREATE EXTENSION
cypex=# CREATE TABLE t_area (

id serial PRIMARY KEY,
name text,
g geometry

);
CREATE TABLE

The keys to GIS data are the “geometry” and “geography” columns. These aren't
directly visible in a web frontend. Let's take a look at how default queries are
generated:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 46 | 230

When we generate a default query, the end product will still contain a geometry
column:

cypex=# \d+ cypex_generated.t_area
View "cypex_generated.t_area"

Column | Type | Collation | Nullable | Default | Storage | Description
--------+----------+-----------+----------+---------+----------+-------------
id | integer | | | | plain |
name | text | | | | extended |
g | geometry | | | | main |
View definition:
SELECT f0.id,

f0.name,
f0.g
FROM t_area f0;

As it stands, this one isn't readable. To fix this issue, you have to take care of
GeoJSON creation on your own. The reason is that the developer has to define
what the GeoJSON is supposed to contain. Check out the ST_AsGeoJSON
function to transform your column to the desired format.

The following example shows how a GeoJSON can be created using a custom
query (instead of a default one):

SELECT id,
name
(st_asgeojson(t_area.*, 'g'::text))::jsonb AS json_position,

FROM t_area;

You also have to create a trigger, in case you want to modify the GeoJSON coming
in. You need to define how to transform things back to “geography” or back to
“geometry”.

GIS apps in action
With CYPEX you can build powerful GIS apps. The following screenshot shows an
example of what’s possible. What you see below is a visual editor which allows you
to modify polygons.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 47 | 230

https://postgis.net/docs/ST_AsGeoJSON.html

It’s important to understand how this image was created: let’s take a look at what
was done in the WYSIWYG editor. A Leaflet Map element was used and the JSON
column was selected as the data source. If all triggers are correctly in place, you’ll
see a map similar to the one above.

The configuration of such a widget is similar to any other widget known to CYPEX.
The important part is to use the GeoJSON column to feed the widget with GIS
data. In addition to that, you can use background layers to display additional
information:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 48 | 230

In general, working with GIS data is easy. The CYPEX development team will
expand this capability in the future, and add more features to the GIS backend.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 49 | 230

Calling server side code
A workflow is a good start if you want to build an application. However,
sometimes it’s still necessary to add control elements. In this section, you’ll learn
to add buttons and to write server side code to make your application even more
powerful.

Let's start with a basic data model:

BEGIN;

CREATE SCHEMA calculator;

CREATE TABLE calculator.t_date
(

id serial PRIMARY KEY,
t timestamptz DEFAULT now()

);

INSERT INTO calculator.t_date (t) VALUES (now());

CREATE OR REPLACE FUNCTION cypex_generated.add_entry()
RETURNS void AS
$$

INSERT INTO calculator.t_date (t) VALUES (now());
$$ LANGUAGE 'sql';

COMMIT;

After creating the module, an entity, the query and permissions, you can generate
the application. The result once this is done is a basic application showing
nothing more than a table containing a timestamp.

Now the goal is to add a button calling the add_entry() function on the SQL side.

Before you get started, various factors have to be taken into account: The function
called by the button must exist in the cypex_generated schema - no other
schema will be taken into consideration - because it's the only schema exposed
via the REST API which is generally available.

Also: Make sure that permissions for those functions called are set properly. It's
also necessary to create the function you want to use BEFORE you generate the

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 50 | 230

GUI. Otherwise the metadata of the function won’t be visible on the API side. In
future versions of CYPEX, that won’t be necessary anymore.

After these preparations have been completed, you can enter edit-mode, select
the “call button” element, and add it to your app.

Note the name of the function. Make sure that you choose the right function.
There is no need for parentheses.

Also: The name of the schema isn't relevant - CYPEX knows that the function has
to be in the cypex_generated schema. In our case, no arguments are needed. (If
arguments are needed, specify them in the argument list.) Finally, add a label and
select a nice icon. Voilà, you have just created your first button and your first
server-side business logic.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 51 | 230

The end product looks like this:

Buttons are useful to trigger server-side business logic such as aggregations. But
you can also directly impact your workflows. Sometimes, more complex
operations are needed. Triggers are the best and most appropriate way to make
that happen.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 52 | 230

Scheduling jobs and notifications in CYPEX
CYPEX is in charge of handling everything from rapid prototyping to full
application development.
When building a full application, it can become necessary to schedule jobs.
CYPEX offers the means to make that happen using pg_timetable, a job scheduler
developed by CYBERTEC. It’s able to handle all kinds of job execution tasks.

Let’s take a look at a sample use case:
● When a contract is entered, somebody else should be notified
● If there is no response, try again in two weeks

The way to integrate job scheduling with CYPEX is by using standard SQL tables.
In pg_timetable, every job is stored in tables. By writing database-side code, you
have a transactional way of scheduling jobs.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 53 | 230

https://www.cybertec-postgresql.com/en/products/pg_timetable/

pg_timetable architecture
Before you explore further, you need to get familiar with the basic architecture of
pg_timetable:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 54 | 230

All configuration data is stored in tables, which allows you to model fairly complex
operations:

Note that shell operations are only possible when running CYPEX outside of a
cloud context. When starting pg_timetable, you can set a switch to control this
behavior.

Scheduling jobs

If you want to learn more about pg_timetable, please see the official pg_timetable
documentation to get more information about the basic processes.

Handling notifications
Notifications and job scheduling often go hand-in-hand. In CYPEX all notifications
are stored in tables. What we want to achieve are:

● Full transactional semantics
● Being able to have everything in one backup
● Easy integration.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 55 | 230

https://pg-timetable.readthedocs.io/en/master/
https://pg-timetable.readthedocs.io/en/master/

The data structure looks as follows:

To send a notification to an end user, all you have to do is to call a server-side
function:

CREATE FUNCTION cypex.create_notification (
recipient int8,
message text,
level text DEFAULT 'info',
target text DEFAULT 'gui'

)
RETURNS void
AS $$
BEGIN
INSERT INTO cypex.t_notification(recipient, message, level, target)

VALUES (recipient, message, level, target);
END;
$$ LANGUAGE plpgsql;

The notification will be sent to the notification table and then displayed in the
graphical user interface:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 56 | 230

When the message is selected it will be marked as “read”. However, you can easily
mark it unread using SQL queries (= UPDATE statement).

pg_timetable: Advanced job scheduling
pg_timetable is an Open Source job scheduler for PostgreSQL. It’s fully
transactional, offers the ability to handle complex tasks and can be fully
configured using standard database tables. pg_timetable is a core component of
CYPEX - all configuration tables are automatically pre-installed and are therefore
ready-to-use.

Why is pg_timetable part of CYPEX in the first place?
The reason is that CYPEX needs scheduling capabilities to handle various
important things such as but not limited to:

● Asynchronous execution
● Notifications
● Sending emails
● Job scheduling

Let's discuss those tasks in more detail:

Asynchronous execution
Often users want to run long operations. Just imagine some data pre-aggregation
which might take 20 minutes to complete. The problem is: If you have a button in
a CYPEX UI you’ll face timeouts and many other usability-related issues which can
cause inconvenience. The solution to the problem is asynchronous execution.

How can you do that? pg_timetable has a feature which allows for the execution
of “self-destructing chains”. This type of chain is executed only once and is then
removed by the system. In case the execution is interrupted, pg_timetable will try
again. All you have to do to run a chain asynchronously (single execution) is to
write a server-side function which schedules a pg_timetable job. Your GUI will
then simply call this quick function and wait for pg_timetable to handle things
asynchronously.

Your server side function can do whatever is needed. It can schedule the task to
execute what your business logic requires, send an email or issue a notification
when the task is complete.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 57 | 230

On the GUI side all you need is a button, a state change or some other operation
capable of scheduling a job.

The following example contains a simple method to create a self-destructing
chain:

CREATE OR REPLACE FUNCTION raise_func(text)
RETURNS void LANGUAGE plpgsql AS

$BODY$
BEGIN

RAISE NOTICE '%', $1;
END;
$BODY$;

SELECT timetable.add_job(
job_name => 'notify then destruct',
job_schedule => '* * * * *',
job_command => 'SELECT raise_func($1)',
job_parameters => '["Ahoj from self destruct task"]'::jsonb,
job_kind => 'SQL'::timetable.command_kind,
job_live => TRUE,
job_self_destruct => TRUE

) as chain_id;

Notifications
This leads us directly to the next important topic: notifications. As you have
already seen all your chain has to do is to send a simple INSERT:

INSERT INTO cypex.t_notification(recipient, message, level, target)
VALUES (recipient, message, level, target);

This is enough to send a notification. Note that in PostgreSQL all notifications are
fully transactional. For all practical purposes, this means that the notification is
issued on COMMIT to ensure that the message isn't seen too early and to avoid
race conditions.

Sending emails
Sending email is of great importance. pg_timetable and consequently CYPEX
offer this vital capability.

The following example shows how such a job can be scheduled by server-side
code:

DO $$

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 58 | 230

-- An example for using the SendMail task.
DECLARE

v_mail_task_id bigint;
v_log_task_id bigint;
v_chain_id bigint;

BEGIN
-- Get the chain id
INSERT INTO timetable.chain (chain_name, max_instances, live) VALUES ('Send Mail', 1, TRUE)
RETURNING chain_id INTO v_chain_id;

-- Add SendMail task
INSERT INTO timetable.task (chain_id, task_order, kind, command)
SELECT v_chain_id, 10, 'BUILTIN', 'SendMail'
RETURNING task_id INTO v_mail_task_id;

-- Create the parameters for the SensMail task
-- "username": The username used for authenticating on the mail server
-- "password": The password used for authenticating on the mail server
-- "serverhost": The IP address or hostname of the mail server
-- "serverport": The port of the mail server
-- "senderaddr": The email that will appear as the sender
-- "ccaddr": String array of the recipients(Cc) email addresses
-- "bccaddr": String array of the recipients(Bcc) email addresses
-- "toaddr": String array of the recipients(To) email addresses
-- "subject": Subject of the email
-- "attachment": String array of the attachments (local file)
-- "attachmentdata": Pairs of name and base64-encoded content
-- "msgbody": The body of the email

INSERT INTO timetable.parameter (task_id, order_id, value)
VALUES (v_mail_task_id, 1, '{

"username": "user@example.com",
"password": "password",
"serverhost": "smtp.example.com",
"serverport": 587,
"senderaddr": "user@example.com",
"ccaddr": ["recipient_cc@example.com"],
"bccaddr": ["recipient_bcc@example.com"],
"toaddr": ["recipient@example.com"],
"subject": "pg_timetable - No Reply",
"attachment": ["D:\\Go stuff\\Books\\Concurrency in Go.pdf","D:\\Go

stuff\\Books\\The Way To Go.pdf"],
"attachmentdata": [{"name": "File.txt", "base64data": "RmlsZSBDb250ZW50"}],

"msgbody": "Hello User, <p>I got some Go books for
you enjoy</p> <i>pg_timetable</i>!"

}'::jsonb);

-- Add Log task and make it the last task using `task_order` column (=30)
INSERT INTO timetable.task (chain_id, task_order, kind, command)
SELECT v_chain_id, 30, 'BUILTIN', 'Log'
RETURNING task_id INTO v_log_task_id;

-- Add housekeeping task, that will delete sent mail and update parameter for the
-- previous logging task
-- Since we're using a special add_task() function we don't need to specify the `chain_id`.
-- Function will take the same `chain_id` from the parent task, SendMail in this particular case
PERFORM timetable.add_task(

kind => 'SQL',
parent_id => v_mail_task_id,
command => format(

$query$ WITH sent_mail(toaddr) AS (DELETE FROM timetable.parameter WHERE task_id = %s
RETURNING value->>'username')

INSERT INTO timetable.parameter (task_id, order_id, value)
SELECT %s, 1, to_jsonb('Sent emails to: ' || string_agg(sent_mail.toaddr, ';'))
FROM sent_mail
ON CONFLICT (task_id, order_id) DO UPDATE SET value = EXCLUDED.value$query$,

v_mail_task_id, v_log_task_id
),

order_delta => 10

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 59 | 230

);

-- In the end we should have something like this. Note, that even Log task was created earlier
-- it will be executed later
-- due to the `task_order` column.

-- timetable=> SELECT task_id, chain_id, kind, left(command, 50) FROM timetable.task ORDER BY task_order;
-- task_id | chain_id | task_order | kind | left
-- ---------+----------+------------+---------+---
-- 45 | 24 | 10 | BUILTIN | SendMail
-- 47 | 24 | 20 | SQL | WITH sent_mail(toaddr) AS (DELETE FROM timetable.p
-- 46 | 24 | 30 | BUILTIN | Log
-- (3 rows)

END;
$$
LANGUAGE PLPGSQL;

Job scheduling
You can schedule normal jobs which are to be executed repeatedly or at a given
point in time. We recommend checking out the pg_timetable documentation to
learn more about job scheduling.

Tracking history
CYPEX may be used to store highly critical data. In those cases, it’s necessary to
track changes made to an entity. However, it's not only about critical data -
sometimes you simply want to debug an application and check what’s going on.

Enabling history tracking is easy: Go to the database setup page, and select the
entity you want to track. Use the “Auditing” button to control this behavior.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 60 | 230

https://pg-timetable.readthedocs.io/en/master/

Once this is done, the table is tracked by CYPEX. In the background, a couple of
changelog triggers are deployed, which store all changes made to the desired
objects in JSON format.

If you want to inspect these changes - and if you are a superuser - you can go to
the admin panel and take a look at the data in detail:

It’s the task of the administrator or the person in charge of the application to
handle the cleanup. We strongly believe that audit data should not be deleted
automatically. For that reason, it’s necessary for end users to explicitly control
what’s deleted, when it's deleted and how it’s deleted.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 61 | 230

CYPEX GUI release management
CYPEX allows superusers to make immediate changes. The edit-mode is only
accessible to superusers.

However, in some cases you might want to change the application without
actually using it immediately. To achieve live editing without harming productive
users currently working with the application, you’ll need to use release
management. Before we dig into that, it’s worth pointing out that CYPEX actually
allows you to revert to a previous version of your application.

Here’s how it works:

Your application’s history can be seen in edit mode. By clicking on a previous
version and confirming your request, you can go back to that version of your
application.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 62 | 230

This is exactly why we stressed earlier in the document that it’s important to write
proper comments in case you change your application. It makes it easier for you
to go back and find the right release.

So far, you have seen how to make changes and how to revert them. To make a
release, you have to click on the blue icon in the right upper corner of the app
(next to the normal “save” button).

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 63 | 230

In the CYPEX GUI, versions are associated with users. That means it’s possible to
run various versions of the app in parallel - without any problems. Different users
will see different variations of your solution - which might be exactly what you
want, in case changes made to your GUI are highly critical and you don’t want to
risk breaking things in production.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 64 | 230

Changing the layout of your application
Apart from the menu entry which allows you to switch back to a prior version, you
can also make other adjustments to your application. You can change colors,
upload logos and set the way corners will be displayed. In the future, the variety of
changes that can be made will be expanded even more. Below are some example
screenshots of what’s currently possible:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 65 | 230

CYPEX built-in expressions
Let's come to a core concept of CYPEX: expressions. What you actually see in the
GUI isn't just some static field, but in fact, a JavaScript expression which can be
modified. This gives you a great deal of flexibility and allows you to tailor the GUI
to your needs. Using JavaScript expressions, you have great power at your
fingertips.

However, most people aren't heavy JavaScript users and therefore a lot of the
more common tasks have been simplified by adding graphical shortcuts. One of
these shortcuts was shown before: ID resolution. What the GUI element actually
does is to modify the underlying JavaScript relation in the desired way.

But let’s not get lost in technical details: Let's move forward and see what you can
do in real life to build more useful applications.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 66 | 230

To show how things work, look at the TODO list built in one of the previous
chapters. Go to edit mode, and click on the “TODO item” column in your main
table. If you look closely, you'll see “props.data”. This is the JavaScript expression
mentioned a moment ago.

In this case, the column is supposed to display the “todo_item” element coming
from the backend. But you can modify that - you can apply basically any
expression to this data.

For the sake of simplicity, let’s add a prefix to the content of the column:

What we’re using here is pure JavaScript code.

“MY CHANGE: “ will be used as a prefix. If you have a basic knowledge of
JavaScript, you’ll be able to do really powerful things using simple expressions.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 67 | 230

The final product will look as follows:

The way data is displayed has been changed on the fly. The workflow stays
unchanged. The data in the backend is also going to stay unchanged - we’re only
talking about the way CYPEX displays data.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 68 | 230

CYPEX Custom Expressions
The CYPEX development team wants to provide our customers with the most
flexible solution possible. We’ve visualized abstract tools to make them as easy to
use as possible. However, many applications need more than just display
elements which put a 1:1 copy of data on the screen. To make a truly beautiful
application, it's necessary to add format options, dependencies and a lot more.

The solution to the problem of providing end users with a powerful and
easy-to-use GUI is the introduction of “custom expressions”. In the GUI, most
elements can be fine-tuned by using custom JavaScript code. Why is that
necessary? Here are some examples:

● Hiding or showing elements depending on a value in a data source
● Applying colors which depend on the content of a variable
● Calculating values on the fly

Of course there are many more examples proving why expressions make sense.
In this section, we’ll take a look at custom expressions and understand how they
can be used.

Basic “custom expression” concepts

In CYPEX, each element on the page has access to its selectors. So what are
selectors? Let's dive in and find out. Selectors are predefined JavaScript objects
with properties and values. CYPEX uses selectors to make elements on the page
interact with each other in a controlled way.

Many GUI elements allow for custom expressions. The configuration editors
provide a way to define "Custom Expressions" as input. Depending on the
element configuration, this input should return a value, e.g., string, number, array,
object, or function. We have documented the required value for each element to
make it easier for developers to adjust the configuration. We recommend
checking out our video tutorial series.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 69 | 230

https://www.cybertec-postgresql.com/en/our-products/cypex-online-academy/

Accessible JavaScript objects

Location

The first thing to understand is how to navigate inside the page. There are many
variables which are of key importance. These can be used to figure out where we
are and how to navigate through the application. Let's inspect these variables in
more detail to figure out how it all works, and what is possible:

location.pathname

pathname is a string which contains the URL's path for the location, which will be
an empty string if there is no path.

location.queries

This variable is a string containing a '?' followed by the parameters of the URL. In
CYPEX this is also an object containing arguments.

page

This object represents the current page of the application.

page.id

Identifier of the current page.

page.loadedAt

Date and time of the last page load.

elements

Elements is an object which contains all elements located on the current page. To
access the element selector, the element identifier should be picked from the list,
e.g., elements.<element_id>.

Here is an example showing all element names on the page. Mind that there is
tab-completion at work. Simple type “elements” and CYPEX will immediately
display all variables inside the object:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 70 | 230

element

The interface of the element itself. It can be used in the custom expression field
for the current scope of the element. For example: element.value

element.i18n

An object containing translated texts in the current language, e.g., title, label, etc.
for this element

props

The properties passed down by the parent element, for example, table or form, so
their child elements will have access to props.data (= variable containing data
elements)

lodash

A modern JavaScript utility library delivering modularity and performance can be
used inside the "Custom Expression" editor.

Check out Lodash for more information.

Chart Filter as “Custom Expression“

Server data can be filtered by any element selector value.
Advanced filters might look like this:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 71 | 230

https://lodash.com/

{
"combinator": "AND",
"filters": []

}

It uses the selected table row value as a column to filter.

Syntax: elements.<table_id>.selected.row.<column_name>.

To create advanced filters, CYPEX uses PostgREST, so the filters array must contain
a collection of possible combinations like

{
field: <column_name>,
operator: "eq",
value: elements.<table_id>.selected.row.<column_name>

}

The following image contains a real-world example:

Values will be returned as strings.
The full list of PostgREST filters can be found here:
https://postgrest.org/en/stable/api.html?highlight=operators#operators

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 72 | 230

https://postgrest.org/en/stable/api.html?highlight=operators#operators
https://postgrest.org/en/stable/api.html?highlight=operators#operators

JavaScript
A scripting or programming language, running inside the web-browser that
allows you to implement complex display logic and features for websites.

The web reference for JavaScript:
https://developer.mozilla.org/en-US/docs/Web/JavaScript

The following listing contains a little cheat sheet for your daily work:

Basics

Literal values

500 number
"Star Wars" string
true boolean
[1, 2, 3] array

{success: "green", error: "red"} object

Expressions

100 (+ - * /) 2.5 types of calculation
"Star " + "Wars" string concatenation
true && || false opperators

Inline conditionals

6 / 2 == 3
1 > 2 ? "success" : "error"
"Han Solo".endsWith("o")

You can use all modern JavaScript features available in your
browser

"Luke Skywalker".split(" ")
["Luke", "Leia"][0]
{success: "green", error: "red"}["green"]
Object.keys({foo: 1, bar: 2})

Modern JavaScript features

({data:null}).data?.value

null ?? "fallback"

`${5 * 4} years old`

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 73 | 230

https://developer.mozilla.org/en-US/docs/Web/JavaScript

Available expressions as table child

1. Access a specific field of the current row

props.data["first_name"]

props.data["created_at"]

props.data["Name with non-alphanumeric characters!"]

2. Access all data

This can be used in a json field to visualize the whole row at once

props.data

Accessing Own Element Data

element.data

element.value

Accessing Other Elements Data

elements["some_markdown_field"].text

elements["some_table"].data

Accessing Props

data.props["name"]

Accessing Element Translations

i18n.text

Accessing The Location Object

location.query.identifier

Accessing The Page

page.loadedAt

In one of the previous sections, you learned that there are actually two ways to
resolve IDs in a relational model: a.) use queries and joins or b.) fix things on the
client side, using expressions. The beauty of expressions is that things are usually
far easier to handle, since you don’t have to touch the database at all. However,
you also need to keep an eye on performance. Depending on your situation, one
or the other might result in faster performance.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 74 | 230

Displaying elements conditionally
All examples shown in this tutorial so far rely on the fact that elements have
always been shown - regardless of the the situation on the page and the data
displayed. In reality this isn't always the case. Sometimes it's necessary to show
elements only in certain situations.

What are examples of this? Suppose you only want to display an image in case
some checkbox is ticked. Or maybe you want to display a button, but only when
some fields are filled out. There are countless scenarios where you need
conditional elements.

CYPEX supports the notion of a conditional container. What that means is that it’s
possible to use a condition to display a group of elements which depend on that
condition.

Hiding a button conditionally

Let’s see how it works and see how to hide a button. The goal is: the “Edit” button
should only be visible if a value in a dropdown has been selected. If there’s no
value, the button should be hidden.

The way to do that is by adding a “Conditional Container” element to the GUI. The
elements you want to show / hide can then be added to this element. Then you
need to assign a JavaScript expression to the element. In case it returns true,
everything is visible:

However, if this expression does not return true, but false, the elements in the
container will be hidden from view. The advantage is that you can basically access
all elements on the page and use those values to control this kind of behavior.

Before you take a look at the expression you need to put into the “Show content
field”, you can see what the desired output looks like:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 75 | 230

No value has been selected and therefore the button is hidden. As soon as you
select a value, the button will be displayed:

Let’s take a look at the JavaScript expression we need to use:

!!elements.default_autocomplete_input_2bedb141.value

This expression is sure to return true or false. But what does it actually mean? You
can access all elements on the screen (“elements”). Every element on the page
will automatically have a name. In this case CYPEX decided to call the element
“default_autocomplete_input_2bedb141” (check the name of the element in the
configuration window). Then you can access the value of this element. If it’s there
it returns true - if it isn’t there, it returns false.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 76 | 230

Almost any level of complexity is allowed here. All you have to do is to produce
“true” or “false” to tell the container what to do.

List of element interfaces :
The following examples will show how you can make use of variables, access fields
and information using the graphical editor.

Data Display

element. itself or elements.<data_dispaly_id>.

element.color

color: Access to element color, specified below.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 77 | 230

element.data

Access to the element data if “Query name“ is set as a data source. Depending on
the configuration mode, the data can be an object or an array.

For the mode “First Row“ is element.data an object.

For the mode “All Data“, element.data[] is an array,
use element index access to specific record e.g.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 78 | 230

element.error

Since this element fetches data by the “Query“ name, the error message is
accessible if the request fails.

element.formattedData

Get the value of the preformatted data, e.g.,

element.identifier

Returns identifier value if it is set in the configuration

element.loading

Boolean value. Indicates if the data is in the process of being loaded from the
server

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 79 | 230

i18n

This section describes internationalization and multi-language support.

i18n.label

Returns a string containing the current translated label

i18n.text or elements.<markdown_text_id>.i18n.text

Translated texts in the current language, returned by markdown editor

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 80 | 230

Pie / Bar / Line Chart
Let's focus on configuration parameters available to control charts.

element or elements.<chart_id>.

element.data

An array of records, server data fetched by “Query “ name.

element.error

Returns the error message if the request fails.

element.loading

The boolean value indicates if the data is in the process of being loaded from the
server.

element.selected

Returns selected object(record) if selection in chart configuration is enabled.

element.i18n.title

Returns a string that is translated into the current language “Title“.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 81 | 230

Table
Tables also support custom expressions. This section describes which features are
available and what can be done to make this important GUI element more
powerful.

element. or elements.<table_id>.

element.data

Server data, fetch by setting the proper “Query Name“.

element.error

Returns an error message if the request fails.

element.limit

The number of rows per page.

element.loading

The boolean value indicates if the data is in the process of being loaded from the
server.

element.loadingParams

A partisan object of the params set during data loading

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 82 | 230

element.loadingParams.filter

An object of advanced table filters, if it exists.

element.loading Params.limit

The number of max rows can be fetched.

element.loadingParams.offset

The number of rows to skip before beginning to return rows.

element.loading.order

An optional array of objects like

{
fieldName: string;
asc: boolean;
hidden?: boolean;

}

element.metadata

element.metadata.canDelete

A boolean value, returns a value indicating if the user has sufficient permissions to
delete records.

element.metadata.canUpdate

A boolean value, returns a value indicating if the user has sufficient permission to
update records.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 83 | 230

element.metadata.rows

Metadata related to each row / record where the property is a row key;

element.metadata.rows[0].canDelete and canUpdate

Specify permission for the current row.

element.metadata.rows[0].currentStateI18n

Translation object generated on the server during table creation

.short_desc: string

.title: string

.long_desc: string

element.metadata.rows[0].stateChanges

An array of objects with possible workflows:

{
to: string, // workflow value
i18n: object // translation object, e.g., { title:

string }
}

element.metadata.rows[0].stateName

Is a column name which contains workflow values.

element.nextFilter

This is an advanced option. An object of advanced table filters is a filter object
which can be fetched while the user is about to build the filter. You will need this
to quickly preview output.

element.NextPageAvailable

Is a boolean value that shows if the last page has already been fetched or not.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 84 | 230

element.offset and element.order

Same as in loadingParams. The only difference is that these values can be
configured in the element editor.

element.orderIndexed

Has the same definition as order, but is used as a helper for column sorting.

element.params

Also contains filter, limit, offset, and the order specified in the URL to
fetch table data.

element.references

An object of joined tables (referenced table), if such tables exist (they do exist in
case you use “default resolution” in the model builder). This configuration can be
found in the “References“ section f the table editor, e.g.:

Each property or value is accessible in the “Custom Expression“ editor.
The property name is a referenced column name

and the value is an object:
.viewName: string (viewName: is the name of a joined table)
.identifierName: string (identifierName: is the joined table identifier)

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 85 | 230

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 86 | 230

element.searchInputValue

Access to the value of the table search input

Example: element.searchInputValue = "Dell"

element.selected

For tables with “Selection“ enabled selected value can be used as an expression:

To get data of the whole table row, even to columns that aren’t displayed in the
table but natively present in the “Query“, the following syntax should be used:

elements.<table_id>.selected.row.<column_name>
or for usage inside the element itself
element.selected.row.<column_name>

For example, to use the column “Name“ as a title for another element, which uses
the “Custom Expression“ editor:

Note: If “First row selected“ isn't enabled and the row wasn’t clicked, it means the
selected object is empty. In this situation, use “?”
which is a JavaScript operator to avoid errors if no value exists:

elements.<table_id>.selected?.row?.<column_name> ?? "Default
Value"

“Default Value“ also can be an empty string.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 87 | 230

Table columns
In the current version of CYPEX, table columns are elements but without external
access. It's impossible to get a column value inside the “Custom Expression“ editor
used by any other element on the page. However, every column type has access
to the table data through the props key.

Here is an example:

To get the data of a column inside the props objects, use the following syntax:
props.data["remote"]. In this case we access the column called “remote” and
fetch the idea. The Boolean() method will ensure that the value isn't null and not
undefined.

Use “Custom expressions” to format the string or to adjust the output according
to your needs. It’s also possible to pick the necessary column using autocomplete
inside the “Text Field“, if adjustments aren't required.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 88 | 230

Props object
The props object is one of the most fundamental building blocks of the “Custom
expressions” machinery. It contains all object-related data, keys, metadata as well
as references. It's the single most important object you must understand when
working with CYPEX expressions in general:

props.data

Row data object.

props.key

Row index.

props.metadata

Row metadata passed through from the table element

props.metadta.canDelete & props.metadata.canUpdate

Are boolean values defining whether the user has permission to delete or update?

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 89 | 230

props.references

Only the parent table has any of the references(joined tables) configured; it’s
possible to get those references using the following method:

props.references.id

Specifies the source column in this example.
Keep in mind the whole referenced row will be returned as a value. Use
autocomplete to select the desired field or use a JavaScript expression to access
various fields as needed:

To get any value from the referenced row, just pick the desired column names.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 90 | 230

Form
Let's focus our attention on forms which need special infrastructure to work
properly. The following variables exist in this context.

element. or elements.<form_id>

element.data

Server data, fetch by setting the proper “Query Name“.

Note: The Form data object also has access to values referenced, if the form has
any joined (referenced) queries.

An example: To get the value of “manufacturers“, use the following syntax:

element.<form_id>.data.manufacturers

In this example, the manufacturer's column does not exist in a query that belongs
to the form, but this value was joined by configuring “Form“ references.

element.errors

An object of possible server errors, available only if errors exist.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 91 | 230

element.hasChanges

Is a boolean value. The value is “true” in case the form has been changed.

element.identifier

String or number required for identifying a record in the form with type “Edit“ or
“Detail“.

element.isValid

Is a boolean value that describes if the form is valid or not.

element.loadState and elements.saveState

These are both objects which look as follows:

{
inProgress: boolean;
error: string | { message: string }

}

element.inProgress

Shows whether save or load action is in process. It contains “error” in case the
request is failing or has failed. An error message is provided.

element.originalData

Initially fetched data. The original copy of the data is preserved until the form is
submitted, so that you can always ensure that the changes can be reverted back
to what was stored before.

element.touched

Boolean value shows if the user has touched any form input.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 92 | 230

Conditional Container
element. or elements.<conditional_container_id>

element.visible

Boolean value. Since “Conditional Containers“ serve to display elements
conditionally, depending on whether “visible” is set to “true” or “false”. In CYPEX
the visibility of an element on a page can be turned on and off.

Note: To toggle an element’s visibility inside a “Conditional Container“ use the
configuration value of other components such as “Boolean Input“ elements on
the same page.

elements.<boolean_input_id>.value

Tabs
element. or elements.<tabs_id>

element.indexSelected

Returns a number (index) of the active tab.

Inputs
All inputs in CYPEX are accessible, like elements. or elements.<input_id>

element.value

Returns a value depending on the input type, e.g., “Number Input“ has an integer
value, “Text Input“ a string, and so on.

element.disabled

A boolean value indicating whether the input is read-only or not.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 93 | 230

element.touched

Shows if the user interacted with the current input.

element.errors

Optional key. Contains form data validation errors.

Note: Controlled Inputs

All inputs inside the form are controlled by the form they belong to.

The “Data Source” section is the place to go to get the data from the parent form.

For example:

Where “Element Id“ is a parent form element ID. “Field Path“ wanted the column
to be displayed.
So, the default value of the controlled input is “Form” data passed through the
input props.

Autocomplete Input

element.loadingOptions

Is a boolean value that shows if option fetching is in process.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 94 | 230

element.options

Is an array of options, each option is an object. Here's an example:

{
value: string | number;
label: string;

}

element.optionsError

Server error if fetching options fails.

element.rawOptions

An array. The row data fetched if “Options Source“ is a query.

element.rawValueObject

An object. The data containing the selected row.

element.searchInputValue

A string. The user input holding the value you are searching for..

element.valueObject

If value is selected, the value of the object is simliar to how it is in the the following
example:

{ value: string | number; label: string } is accessible.

File Input & Multiple File Input

element.file

Access to uploaded files.

element.loading

Is a boolean value that shows if the file is currently uploading.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 95 | 230

element.metadata

An object, uploaded file metadata

{
"hash": string;
"fileName": string;
"realName": string;
"fileType": string; // e.g., "image/png"
"fileGroup": {
"id": string;
"name": string;

// e.g., "public" | "private",
"acl": string[];

// array of strings (roles),
// permissions for file group, e.g., ["cypex_admin"]

},
"typeGroup": {

"id": string;
"typeName": string; // e.g., "image"

},
"acl": string[]; // array of strings (roles), permissions for

file, e.g., ["cypex_admin"],
"id": string;

}

element.metadataError

Is a string, error message.

element.uploadError

This value is a string error message, defined in case uploading fails.

element.files

Access to an array of uploaded files.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 96 | 230

element.metadata

Same as for the single file, but an array of metadata objects.

Subform table
Subform tables serve mostly as form input, in the case of “References“ are
configured (at least one). So “Subform table“ can update joined tables, used for 1:n
relations during data editing. Subforms used as input have the same input
properties mentioned above, but the value is an array of objects (joined table
data). The syntax to get those values is as follows:
elements.<sub_form_table_id>.value returns Array<object>.

Fields
Various elements in CYPEX are accessible as shown in the following listing:

element. or elements.<input_id>

Google Maps
In this section we will discuss how custom expressions can help to make maps in
CYPEX better.

element.data

An array of markers, markers are objects

{
lat: number; // latitude
lng: number; // longitude
name: string;

}

element.loading

Is a boolean value indicating if data is loading or not.

element.error

Error message in case data load fails.

element.selected

Returns marker (check the type above) object, only if any is selected by the user.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 97 | 230

Action Button

element.clickedCount

Number of times the button was clicked.

element.lastClicked

A date type, last time the button was clicked.

Call Button

element.error

An error message in case the function call fails.

element.loading

A boolean value. Indicates if the function is being called right now.

element.result

The result of a function call.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 98 | 230

Internal Link Field

element.data

In order to have access to data objects a “Data Source“ is required. In this case,
data will be a record (table row). You have access to the data as well as to
identifiers and status-related information.

element.error

Error message in case a request fails.

element.hasStarted

A boolean value, indicates if data has started loading.

element.identifier

String or number, in case the identifier was set in the “Data Source“ section.

element.loading

Boolean value, if loading currently in process.

Number Field
value: a number, field value.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 99 | 230

CYPEX administration panel
The CYPEX administration panel gives users an easy way to administer and
manage CYPEX as a whole. Many functionalities such as …

● The generation of applications
● Security management
● Data model definitions
● Workflow management
● Extension handling

… and whole a lot more are all handled by this important and easy-to-use
interface.
In this section you'll:

1) learn how to use the tool
2) understand how it works and
3) find out how to achieve your goals easily and efficiently.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 100 | 230

CYPEX dashboard
Once you have logged into CYPEX, you'll find yourself on the dashboard. It gives
you an overview of what’s going on inside your CYPEX deployment:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 101 | 230

CYPEX Applications
A single CYPEX deployment can handle a large set of applications running inside
the same database. If you click on “Applications” in the menu on the left hand
side, CYPEX will present you with a list of all those apps currently deployed on
your system.

You can easily manage your applications from this menu. This includes but isn't
limited to:

● Generating new applications
● Incremental rendering for existing applications
● Launching applications
● Deleting obsolete apps
● Importing entire applications from other systems

Let’s walk through this important page:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 102 | 230

Create application
The most important moment in the life-cycle of a CYPEX application is its
creation. CYPEX will predict the application out of the underlying data module. To
start the process, click on “GENERATE”. This will open the following screen:

The first thing you have to define is the name as well as the description of the
application. Then, you need to configure which user the app has to be predicted
for. This is important because depending on who you are, you’ll end up with a
different application. CYPEX will only render elements you have access to. If you
aren't allowed to perform certain operations in your application (e.g. “sign
contract”) CYPEX won’t generate tables, forms, buttons, etc. for that purpose.
Therefore, selecting the right user is of vital importance. You also have to keep in
mind that it’s often necessary to create many applications for the very same
database. Just imagine a simple online shop: The backoffice application and the
front app might operate on the same database, but those applications will be
totally different because of permissions, requirements and so on.

Once you have decided on the user who will own the application, you need to
select the “queries” you want to use in your application. Those queries that are
selected will be used by the default rendering and app prediction code. Often, it’s
necessary to render all existing objects. However, this is far from certain, which is
why you have the option to selectively decide about what you want to render.

Finally, you can choose a layout, which is a vital part of the process: In large
companies, the style of an app is of critical importance.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 103 | 230

Application list

Once the new application has been generated, it will show up in the list as
displayed below:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 104 | 230

Application List icons

Next to each application in the list, you'll find a couple of icons which are needed
to manage the application and handle its life-cycle. Let’s walk through those icons
step by step, and see how to make use of their functionality:

Edit icon

The name of your application can be easily added after its creation. You can also
define the default language of the application:

Generate and add new page icon

Applications aren't static. During a project, the first incarnation of an application
might not be the final version. This is true for the graphical user interface as well
as for the underlying data structure. It happens more often than not that after an
application has been used for a while, new tables are added and it’s necessary to
work incrementally on the application. The “generate and add new pages” icon
can help you to predict pages and add them to your existing application. It’s
possible to use the icon after the app has been used, or after it has already been
heavily modified. Incremental rendering is an important method to reduce the
effort needed to add new components to your solution. Incremental rendering
will dramatically improve the life-cycle of your application. No application is ever

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 105 | 230

static and therefore it's vital to have the capability to add data sources after an
app has become productive:

Note that you can only render pages which aren't part of your application as yet.
CYPEX will only provide you with those queries which have not been used,
reducing the manual input needed to an absolute minimum.

Start application icon

The “play button” will launch the application you’ve just created. You can use this
button to …

● Use the application
● Open the application to run the WYSIWYG editor

Export icon

CYPEX allows you to export an application. Why is this important? Development is
generally not carried out on a production system. Therefore apps have to be
transported from one CYPEX deployment to other systems. Import and export are
needed to achieve exactly that.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 106 | 230

Export format in JSON

Note that the entire definition of the
graphical user interface (GUI) is a single
JSON document which can easily be
stored, read and modified as needed.
You can also put this under version
control (for Git) to ensure that changes
are tracked.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 107 | 230

Delete icon

If you don’t need your application anymore you can simply delete it:

What this does is to remove the JSON documents from the database: Note that it
does NOT delete queries, tables, constraints, workflows and alike - all we delete
here is the JSON definition representing the graphical user interface. This is
important to understand because CYPEX will not put your data at risk.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 108 | 230

Database
The next important feature of the admin panel is the ER editor. It allows you to
check your ER model, define queries, handle workflows and a lot more. It will be
the backbone to handle the data side of your database infrastructure:

You can zoom in and out of your ER model easily. Tables residing within the same
schema will be grouped together within a box. Also: You can click on tables and
views on the right hand side to navigate through the ER model quickly and easily:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 109 | 230

Schema overview
When looking at a schema there are a couple of things to consider: First of all
each relation has “three dots” on the right side of the box. Click on those dots to
configure the relation (create workflows, audit the table and so on). All those
features will be explained later in this document.

You can also see that CYPEX displays the relations between those tables. But
there is more. Let's take a look at those other icons in more detail:

Available table detail icons

The following symbols are used by the ER tool:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 110 | 230

A primary key represents a unique-constraint which prevents NULL entries inside
the table.

The next symbol indicates that a certain column is used by a CYPEX workflow.
Remember, workflows are always defined on a column. The existence of the
workflow is represented by the round symbol.

The “foreign key” symbol is on the “n” side of a “1:n” relationship. Please keep in
mind that you should always index both sides of a foreign key relation to maintain
efficiency.

The “finger print” column represents a unique field. In case a field is unique it can
be used as an identification column.

Finally there is the “default lookup” symbol. It defines that the column in question
will be used as the default text representation of the entity in question.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 111 | 230

Context Menu Table

The core of every relational database is the concept of a table. If you have created
a table, you'll be able to see it in your ER window. Here you see that you can
configure various aspects of a table:

The following entries are available (in case you’re dealing with a local table:

● Query generation
● Workflow management
● Default lookups
● Auditing
● Table details

Let's walk through those components one by one.

Generate Default Query

The first thing to focus on is the idea of a default query: Often you simply want to
see and edit a table. A default query is the best way to make that happen quickly.
Fill out the form and assign the following permissions:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 112 | 230

The list of permissions is important because it will provide vital information used
during default rendering. If a user isn't allowed to perform certain actions, the
rendering process knows that those elements should not be generated in the first
place. Without “INSERT” permissions, you won’t see input forms.

In CYPEX, you can have exactly one default query per relation. In case one exists
already, the element will be disabled:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 113 | 230

Understanding CYPEX workflows

The next important menu entry is used to open the workflow editor. As previously
stated, workflows are a core component of CYPEX. In a simplified world, tables
translate to forms and tables - workflows are in charge of buttons, etc. One could
argue that workflows actually add “life” to your otherwise pretty static application.

In CYPEX, workflows are associated with tables and are defined for a state column.
Go to the ER model and click on the three dots. There you'll find a menu entry
allowing you to define a workflow:

Creating a new workflow

To create a new workflow you need to choose
the column which will contain the status
information of the workflow. How does it
work? The first important thing to
understand is that a workflow basically (but
not only) consists of states as well as state
changes. States are valid entries inside the
state column, while state changes are
UPDATEs moving states from one value to
another. The validity of those changes are
guaranteed by the database engine.

First select the column which is going to be
used to store states. CYPEX will provide you
with values that are currently in the table and
offer them as valid state entries.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 114 | 230

Using the workflow editor

Once you have selected the state field you can create the workflow without any
additional precautions.

Let's take a look and see what the workflow looks like. Note that if you didn’t click
the “transitions to all” you’ll see the following picture:

States are listed but aren't connected yet. You need to do that by hand.

However, you might want all states to be connected with each other. In that case
you click the “transitions to all” checkbox. CYPEX will then automatically produce
state changes for you.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 115 | 230

As you can see, the flow chart is more complicated in this case, since all those
state changes will be represented using directional arrows. The arrows can be
modified easily.

verview of the workflow editor action items

Let’s get an overview of all action items available in the editor:

The headline section shows the name of the
relation the workflow is being defined for.

The alignment icons are arranged as workflow
elements horizontally or vertically on the
playground

“ACTIVATE” & “DEACTIVATE” are of key
importance: Suppose you are changing a
workflow as part of a design process. As long as a
workflow is deactivated, you make all the
changes to the CYPEX configuration tables (meta
data) - the workflow isn't enforced on the core
relations. Only by pressing “ACTIVATE” will you
enable PostgreSQL to apply CHECK constraints
and triggers to actually ensure that what you see
is actually in the data table. Keep in mind that
activating the workflow can fail, in case invalid
entries are included in the table. In that case, the
data has to be cleaned first before the workflow
can be enforced.

We have two ways to add new states to the
workflow: The “NEW STATE” button and the
plus icon shown in the state overview section.

The delete icon allows us to delete a state from
the workflow.

Symbolizes the start of a workflow (preliminary
state). This element isn't a real state but shows
the point when the non-existing element comes
into existence

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 116 | 230

Shows the end of the workflow
(basically when the object is deleted)

Workflow states

Edit the state inside a workflow

State changes

To create state changes, you have to draw an arrow from one state to your desired
target state. Make your changes visually, as shown in the image below:

Make sure that your state changes are documented and configured properly. By
adding texts to your state, the system will know how to label your buttons and so
on. Therefore it makes a lot of sense to put effort into properly describing your
workflow. Of course changes can be made later. However, it's good practice to use
proper texts early in the process.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 117 | 230

Once the work has been done it will look something like this: As you can see the
business process as been properly modeled and can already be feedbacked by
the end customer:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 118 | 230

Edit a State

Often work has to be modified later. In such cases, use the “Edit state” machinery.
It allows you to change texts later. Note that while it's easy to change the texts,
PostgreSQL enforces these workflows and therefore making changes on
excessively long tables can be quite time-consuming (of course changing the text
itself does not matter):

Inside the application

Workflows serve a purpose. They are important to ensure that the application
actually does what it's supposed to do by limiting possible changes of values
along the way. In the listing below, “pending” can result in “accept” or “reject”.
Active can only be deactivated and deleted:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 119 | 230

As you can see the GUI does not allow for changes that aren't supported by the
workflow. The way data is changed is therefore rigorously restricted to what may
happen.

Workflow symbols inside the table context menu

The existence of a workflow for a certain relation can easily be determined by
looking at the symbols associated with the relation. The green symbol will show
us the way:

Existing inactive workflow on column “status”

Existing active workflow on column “status”

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 120 | 230

Default Lookup

Every relational model will contain a significant amount of “id” columns. The
trouble is, nobody wants to see those numbers in the GUI. To ameliorate the
situation, we enriched the data model by introducing the concept of “default
lookups”:

CYPEX relies heavily on foreign keys and constraints. Select the column you want
to see instead of ID’s. CYPEX will inspect your ER model and key relations so that
the default renderer can automatically generate the app the way you want things
to be.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 121 | 230

Auditing

The CYPEX development team has put a heavy emphasis on security as well as
tracking. Our database experience tells us that security is a key concern for most
enterprise customers. To reflect this need, CYPEX offers an easy way to audit
tables and track all changes.

Enable the audit trail:

CYPEX will automatically deploy all the infrastructure to track changes made to
your table. Those changes aren't only tracked when the GUI or the GUI is used -
even changes made to the underlying tables directly will be tracked to guarantee
that no changes are lost.

Turning off this kind of tracking is equally easy:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 122 | 230

Table details

Just looking at an ER model might not provide you with all the information you
need. The “table details” features allows you to take a look at your data and
inspect the relation in more detail:

In addition to the data model, you can also take a look at the data inside your
table. Note that only a subset of data is displayed, to ensure good performance.
The CYPEX model builder isn't a replacement for a normal database client. If you
want to search the table, modify it, etc., a standard database client such as
DBeaver should be utilized.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 123 | 230

The “data preview” section allows you to inspect the data and get a feeling of
what is inside the database. Often this is needed to get a handle on things before
writing a query.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 124 | 230

Entities

Now we’ll focus on the entity section and discuss which icons are available and
what those icons can be used for:

Focus on selected table in schema overview
Do not focus on the selected table in schema overview
Filter table overview
Schema is visible in schema overview
Schema isn't visible in schema overview

If we don’t want the twitter_posts schema to be visible inside the schema
overview, click on the toggle icon on the right side. The schema with the tables
and views will disappear from the schema overview. Both tables and views will
always appear and disappear when the toggle icon is used.

..

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 125 | 230

Queries

The next important section on the screen is related to queries. Raw tables are
often what we need to build applications. In most cases we have to pre-process
data before we can feed it to the graphical user interface. This is done using
queries. You will find a handful of icons within the editor which can be used to
control this feature:

Add new query
Filter queries
Default queries are not editable
Edit custom query
Delete query

The following image contains an example showing what those menu entries
might look like:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 126 | 230

Authentication
Let's move on to a crucial topic: authentication. Security is of the utmost
importance, which is why the CYPEX team has put great emphasis on protecting
your data and applications.

Users

On the CYPEX side users and roles are mapped to “login names”. This can be done
in the “Users” section of the admin panel:

It’s important to mention that if a user is marked as “admin” it's possible to use
the application designer (WYSIWYG editor) to modify applications. In
production this isn't desirable and therefore you need to be careful with this
setting.

A default language can be assigned to a user. Usually this language is English, but
almost every language is possible, assuming that translations are provided. Also
note that users are mapped to a database role. This is important as the database
role is what controls access to data. The login name (= email) is merely to handle
CYPEX logins - permissions to data are managed on the lowest possible level (=
PostgreSQL) to ensure consistency between the API, the app and of course with
direct database access.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 127 | 230

Users are listed in a table. What you see below is the email address you can use to
log in. Then you see the underlying username as well as the PostgreSQL role
assigned to this specific CYPEX user. Finally, you see the default language of a
user and can figure out if the user is active or marked as an admin user. Users can
be edited using the “pen” symbol:

Create user

Users can easily be created in the GUI. Make sure that your user is properly
mapped to the database role of your choice:

Users are available instantly - there is no synchronization of any sort needed to
make this work.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 128 | 230

Edit User

Editing an existing user is equally simple. Click the edit icon and make the
changes:

You can change the password and quickly set the user as active / inactive.

Roles

The next important step is to define roles. Remember, roles are connected to
CYPEX users and represent real database side users:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 129 | 230

Create Role

Roles can easily be created in CYPEX:

While it's possible to create roles quickly, it's the task of the DBA to assign actual
permissions to those roles. At the moment, this is done at the “query” level. Once
a query is created, you can assign permissions to roles.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 130 | 230

Login Settings

In the “Login Settings” you can define the logo shown during login:

You can upload any suitable logo and easily change the name of the page to
adjust CYPEX to your company CI’s needs. Note that the logo you are pointing to
has to be in the “public” folder of your webserver:

These settings will directly translate to the way the start page looks like. The
following screenshot shows what the default layout is like in the standard
configuration shipped to customers:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 131 | 230

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 132 | 230

LDAP Configuration

So far you have used local users and local authentication. While this is perfect for
small scale deployment, it's not viable for large companies featuring hundreds
and maybe thousands of users.

The solution to this problem is “Single-Sign-On”. In CYPEX you can achieve this
functionality using LDAP:

Create a new LDAP configuration and connect CYPEX to your LDAP infrastructure.
Here is how it works:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 133 | 230

You need to fill out a form containing the settings. The LDAP configuration
requires the following settings to establish a connection (The list also contains
examples of each setting):

- URL ldap://ldap:10389
- Bind dn cn=admin,dc=cybertec,dc=at
- Bind Password **********
- Base dn ou=people.cd=cybertec, dc=at
- Search Attribute uid

To use LDAP in order to authenticate users and manage rights inside the
application, you have three options:

DEFAULT ROLE:
means only one role on the CYPEX side for all LDAP users. If the username and
password are correct, the user can log in, and gets assigned this default role.

POSTGRES ROLE IN LDAP ATTRIBUTE:
is the LDAP entity attribute name for the CYPEX role name. If the user logs in and
is defined as a cypex_admin in LDAP, the user is set for the attribute
cypex_admin in CYPEX

MAP LDAP ROLE TO POSTGRES ROLE:
If the username and password are correct, then the user gets the first match from
the mapped roles. In case the user has the LDAP user role and this is mapped to
cypex_user, the user has the role cypex_user in CYPEX.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 134 | 230

LDAP-Configuration option POSTGRES ROLE In LDAP ATTRIBUTE_

The role attribute where the role is saved on the LDAP side.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 135 | 230

You can map the CYPEX role to the LDAP role.
If the LDAP user is assigned to the “Application Designer” role in LDAP, map this
role to the CYPEX cypex_admin role. Check the LDAP group mapping on login to
make sure that mapping exists and the CYPEX role is allowed to login.

Mapping also has an effect on the way CYPEX handles things: If the CYPEX role
mapped is an admin role, the user is considered a CYPEX admin.

This same mapping and authentication process works for the API as well:

“LDAP Role” is a text input field, and “Postgres Role” is a drop-down containing
CYPEX user roles.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 136 | 230

Repository Configuration

Finally, you can define the repositories you want to use to handle CYPEX
extensions. Basically, you give CYPEX access to a Git repository which contains all
of the extensions in a format accessible to CYPEX:

The configuration is straightforward - add the Git data and test the connection.
CYPEX is then fully connected and you can easily add extensions to the system as
needed:

What is of vital importance here is the use of the personal access token. Github
has recently added some security precautions which make this feature necessary.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 137 | 230

Audit
CYPEX allows users to audit tables. This menu entry will facilitate exactly that:

Tables

When a table is audited, the audit trail will be visible in the “Audit -> Tables”
section. The following screenshot shows what that might look like:

PostgreSQL will capture all changes and display them in an easy-to-read format.
One can see a “diff” of what has changed which allows you to gain an overview
quickly:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 138 | 230

Keep in mind that the audit trail can accumulate large amounts of data, and thus
keeping an eye on storage usage is of vital importance to the system.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 139 | 230

Users

However, CYPEX does not only audit the changes made to tables. It's also
important to keep an eye on how users behave and which login activity can be
observed. The “Users” section does exactly that. It contains vital information about
who has logged in successfully, and who has failed.

The goal is to give you a quick yet comprehensive overview of the login activity
related to your application:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 140 | 230

File Management

The next big feature of CYPEX we want to focus on is the ability to upload files.
Files are stored in the database. Storing files in the database has always been
controversial. However, in this case it’s done to ensure that all data including the
application itself can be saved using standard PostgreSQL backups. There is no
need to back up the database, the application and those files separately -
everything is in the same backup. In addition to that, files are handled in a
transparent manner which brings countless advantages if you are dealing with
workflows.

The file upload screen is easy to understand:

The core question is: Why would anybody use this feature? What are the benefits
of such infrastructure? Here are some typical use cases:

● Display images
● Offer downloads
● Send as email attachments

Once a file has been uploaded, you can define user permissions to define who is
allowed to access the file. As with all other data, permissions are handled by the
database directly and are therefore identical within the entire stack (API, GUI,
etc.).

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 141 | 230

Inside the WYSIWYG editor the application designer can use of such files:

Developers have direct access to CYPEX storage and files can be taken from there.

Here is what the list of files might look like in your admin panel:

Upload Files

The upload facility is capable of handling reasonably sized files. In general the
infrastructure is usually used for pictures as well as documents (PDFs, etc.) which
are static in nature:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 142 | 230

Various types of binary files are supported. The following list contains an overview
of what is possible:

● audio
● document
● image
● other
● text

In the future, additional file types will most likely be added, in order to make this
feature even more powerful.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 143 | 230

Data API
The CYPEX data API is an integral part of the system. Every query is automatically
exposed as an API endpoint. The infrastructure will honor access privileges and
automatically keep the API up to date.

The general purpose of the API is to allow users to build custom apps which are
hard to create with the builtin-WYSIWYG editor. In addition to that it allows for
easier integration with other infrastructure components. It’s important to
understand in this context that CYPEX isn't “all or nothing” - it's perfectly feasible
to only use the API.

The purpose of the “Data API” section is to give users a simple method to test the
API generated by CYPEX. As you can see in the screenshot below, a list of all
endpoints is generated automatically:

These endpoints can be tested directly.

Note: When you’re testing the API, keep in mind that you aren't working in a
sandboxed environment. This is the real thing and changes will make it to the

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 144 | 230

underlying database (assuming the API call is successful). Therefore caution is
advised.

Add-Ons
In this section we’ll dig into CYPEX extensibility and learn what can be done to
make CYPEX even more powerful by adding code from external sources.

Repository applications
CYPEX allows users to define ready-to-use PostgreSQL extensions. Those
extensions can be integrated into existing applications to simplify the model
creation process and to automate as many steps as possible.

The way external extensions are supported is as follows:

CYPEX allows users to define a set of Git repositories which can be used to fetch
extensions. It allows you to deploy everything from small SQL fragments and
simple procedures all the way up to full-fledged complex data models.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 145 | 230

The “Repository Applications” menu entry allows you to quickly load entire
applications from the Git repository.

The search field allows you to search simultaneously in all available repositories.
The numbers beside the repository name show how many applications are found,
out of the total number of applications.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 146 | 230

For each application, several different releases can be installed and uninstalled.
That means you may decide whether to use the latest release of the application or
not.

It’s easy to learn more about the application which has been deployed. CYPEX
provides you with metadata concerning your application, as shown in the next
image:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 147 | 230

Extensions
To install SQL fragments you can use the “Extensions” entry. Click on the “action”
button and to easily deploy extensions.

There are countless extensions inside the default repository which can be used:

By default, the CYBERTEC repository for CYPEX is enabled. However, you can
easily add more repositories as needed. For more information, see the section on
Repository Configuration.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 148 | 230

Available CYPEX extensions
CYBERTEC provides a set of extensions which can be used to simplify the process
of building applications. In this section you'll learn which extensions exist and
what they are capable of doing.

Extension: telegram_posts
Purpose:
Store telegram posts

ER model:

Description:
The extension consists of just one table. The content of the message is stored in
the “payload” column.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 149 | 230

Extension: event_logs
Purpose:
This extension provides a generic extension to store log entries and events. The
idea is to generalize event messages.

ER model:

Description:
The database user is stored as text and not as an object id. The reason is that we
want to support “DROP USER” in PostgreSQL and allow for more generic usage.

The log_level is represented as enum type in PostgreSQL which allows for sorting.
The following sort order is used:

● INFO
● NOTICE
● LOG
● WARNING
● ERROR
● FATAL

Note that PostgreSQL will provide this order automatically. It's also possible to
filter easily.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 150 | 230

Extension: blog_schedule
Purpose:
This module offers a simple way to manage blogs, posts and authors.

ER model:

Description:
Authors are identified by email address (unique field). The table is structured in a
way it can be extended easily (fields for phone, etc.). Posts contain boolean field to
identify the status (proofreading yes / no). Blogs have a title. The payload is
intentionally not part of the table as a blog might need various fields to store the
content (payload, images, etc.) - those are supposed to be added by the ER design
person.

Sample data isn't included.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 151 | 230

Extension: newsletter
Purpose:
This module can handle newsletter as well as blacklists.

ER model:

Description:
In email marketing a “Robinson list” is a list indicating who isn't supposed to
receive messages. It's basically a “blacklist”. In the “email list” itself, we store if
newsletters are allowed or if an address is marked as spam. However, it can still
happen that emails bounce. In this case the bounce message is stored in the
newsletter recipient table.

Sample data isn't included.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 152 | 230

Extension: webserver_logs
Purpose:
This is a basic module to store web server logs in a table.

ER model:

Description:
The module consists of just one table. It stores the typical data one would find in a
web server log as a database entry. We are using PostgreSQL optimized data
types to handle IPs. The http status is stored as a simple integer value. Note that
the “tstamp” column represents the insert-time into PostgreSQL (default value =
clock_timestamp()). The timestamp as observed by the webserver is stored in
“request_time”.

Sample data isn't included.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 153 | 230

Extension: twitter_posts

Purpose:
An extension to store twitter posts.

ER model:

Description:
The module consists of just one table capable of storing twitter messages. This is
basically a 1:1 copy of the Twitter API (which is also the foundation of the
twitter_fdw).

Sample data isn't included.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 154 | 230

Extension: clicks_adwords
Purpose:
Handling extensions, campaigns, keywords and clicks.

ER model:

Description:
The model allows storing keywords (t_keyword) in various languages (t_language).
Those keywords are associated with campaigns. For each campaign the extension
analyzes how many keywords were clicked and how often on each day.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 155 | 230

Extension: calories

Purpose:
Storing the energy content of food.

ER model:

Description:
We store the energy content of food as measured in calories. By default the table
is empty. However, when looking at the content of the extension in Git you'll
notice that sample data is available but it's commented out. It should be easy to
load this information if needed.

Extension: periodic_table

Purpose:
Storing elements in the periodic table.

ER model:

Description:
We store elements in the periodic table including a complete list. The name of the
element is stored in English.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 156 | 230

Extension: speeding_ticket
Purpose:
A sample app to store speeding tickets.

ER model:

Description:
We store information about speeding tickets. The purpose of the extension is
more for educational purposes.

Extension: oil_production
Purpose:
Sample data taken from the oil industry.

ER model:

Description:
This table contains data sets (644 records) from the oil industry. The purpose of
this extension is mostly educational. It's ideal to teach windowing functions,
analytics and time series analysis.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 157 | 230

Extension: room_bookings
Purpose:
Handling basic room reservations.

ER model:

Description:
This module stores hotel bookings. Hotels are associated with bookings. Note that
there is no foreign key relation between customers and bookings. We do so to
ensure that customers can be deleted without destroying historic bookings.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 158 | 230

Extension: rental_car

Purpose:
An ER model to handle rental cars

ER model:

Description:
This extension helps to manage rental cars. It stores information about categories,
models, locations as well as drivers and bookings. It's a blueprint for helping
people to get started quickly.

Note that exclusion operators are used to avoid overlapping bookings. Check out
our blog posts dealing with exclusion operators to learn more.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 159 | 230

https://www.cybertec-postgresql.com/en/postgresql-exclude-beyond-unique/

Extension: sensor_timeseries

Purpose:
Handle sensors and time series.

ER model:

Description:
The model consists of two tables. Sensors and sensor data. It's a blueprint to
getting started and to store more comprehensive information in a simple
manner. Note that in case you want to store billions of rows, partitioning the
sensor_data table is an option for scalability reasons. CYPEX is perfectly capable of
handling partitioning.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 160 | 230

Extension: agents_customers_orders

Purpose:
A basic model to handle agents and sales orders.

ER model:

Description:
This module is mainly used for educational purposes. It stores information about
agents, customers and customer orders. It's a basic 3-table model which can be
expanded upon.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 161 | 230

Extension: playlist

Purpose:
A model to handle music

ER model:

Description:
This module is mostly a way to demonstrate the capabilities of CYPEX in an
educational setting. It stores information about bands, songs, playlists and a lot
more. It's one of the bigger extensions used for educational purposes.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 162 | 230

Extension: persons_and_friends

Purpose:
A model to handle friendship.

ER model:

Description:
This module describes friendship relations. A list of people is used to connect
friendship relations (m : n). It's an ideal start to model all kinds of relationships.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 163 | 230

Extension: unit_conversions_list

Purpose:
A powerful module to handle unit conversions

ER model:

Description:
This module contains functions which can be used in CYPEX to perform all kinds
of unit conversions (e.g. km -> meters and alike). It contains a handful of stored
procedures as well as a config table holding information about conversion rules.

Converting a numeric value from one unit to some other unit:

CREATE OR REPLACE FUNCTION convert_units(
value numeric,
input_units varchar(50),
output_units varchar(50)

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 164 | 230

)
RETURNS numeric …

The following listing shows, how meters can be converted to kilometers:

test=# SELECT convert_units(100, 'm', 'km');
convert_units

0.100

(1 row)

Check if a unit can be converted or not (km -> meter is ok, km -> gallons isn't). The
function will error out in case a conversion is impossible:

CREATE OR REPLACE FUNCTION check_units(
input_units varchar(50),
output_units varchar(50)

)
RETURNS void …

Convert a unit to its standard unit:

CREATE OR REPLACE FUNCTION convert_units_from_si(
value numeric,
output_units varchar(50)

)
RETURNS numeric …

The following example shows how 100 meters can be converted to the standard
unit (1 km units):

test=# SELECT convert_units_from_si(100, 'km');
convert_units_from_si

0.100

(1 row)

The entire process is driven by configuration tables:

INSERT INTO t_units_conversion_list VALUES
-- temperature
('F','farenheit','K','kelvin','temperature', .55555555, 255.37222222, 1.8,

-459.67),
('C','celsius','K','kelvin','temperature', 1.0, 273.15, 1.0 , -273.15),
('R','rankine','K','kelvin','temperature', .55555555, 0.0, 1.8, 0.0);

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 165 | 230

-- insert values without offset
INSERT INTO t_units_conversion_list(nonsi_unit, nonsi_name, si_unit,

si_name, class, factor_to_si, factor_to_nonsi)
VALUES

('km', 'kilometre', 'm', 'metre', 'length' ,1000., 0.001),
('hm', 'hectometre', 'm', 'metre', 'length' ,100., 0.01),
('dam', 'decametre', 'm', 'metre', 'length' ,10., 0.1),

…

If further conversions are needed, add entries to the config tables.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 166 | 230

Extension: simple_addresses
Purpose:
Storing addresses given ISO countries

ER model:

Description:
A module to handle address data. To make this module work, the CYPEX
country_list extension must be installed.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 167 | 230

Extension: country_list
Purpose:
Country lists and ISO codes

ER model:

Description:
This module provides country lists and ISO codes. All officially recognized
countries are listed including various incarnations of ISO codes. It allows users to
quickly fill up “drop-downs” containing country codes without having to load
those lists manually. Country names are represented in English and German.
However, other languages can be added easily.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 168 | 230

Extension: basic_types types

Purpose:
Provide basic and commonly used data type abstractions

ER model:
No tables needed.

Description:
The following types are provided by the extension:

● color_code: Hex codes to store colors
○ Format examples: #00ccff, #039, ffffcc

● alphanumeric_string: A string which only supports ASCII characters and
numbers (no blanks, etc.)

● password_text: At least 1 lowercase, 1 uppercase, 1 number, 1 special
character and at least 8 characters long

● url: Matches http and https URLs.
● domain: Match domain names
● credit_card: Match card numbers

○ Amex Card
○ BCGlobal
○ Carte Blance
○ Diners Club
○ Discover Card
○ Insta Payment Card
○ JCB Card
○ Korean Local Card
○ Laser Card
○ Maestro Card
○ Mastercard
○ Solo Card
○ Switch Card
○ Union Pay Card
○ Visa Card
○ Visa Master Card

● hex_value: Hex values such as #a3c113
● number_positive: Positive numbers (NULL allowed, 0 allowed)
● number_negative: Negative numbers (NULL allowed, 0 allowed)
● int8_positive: Positive 8 byte integer (NULL allowed, 0 allowed)
● int8_negative: Negative 8 byte integer (NULL allowed, 0 allowed)

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 169 | 230

Extension: currency_list
Purpose:
Ready-to-use currency lists

ER model:

Description:
This extension provides a ready-to-use list of commonly used currencies (EUR,
USD, GBP, CHF) which can easily be extended. v_currency_list provides a list of
those currencies given your default CYPEX language determined by
cypex.current_language(). The default language of CYPEX can be changed in
the config table of CYPEX.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 170 | 230

Extension: interest_rates

Purpose:
Basic functions to calculate loan-related information

ER model:
No tables needed

Description:
The following function is provided to calculate monthly payments:

CREATE OR REPLACE FUNCTION loan_calculate_rate(
v_sum numeric,
v_interest_rate numeric,
v_months int

)
RETURNS numeric …

Here is a sample:

SELECT interest_rates.loan_calculate_rate(1000.0, 5.0, 12);
loan_calculate_rate

85.6075

(1 row)

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 171 | 230

Extension: room_booking
Purpose:
Basic functions to manage hotel room bookings

ER model:

Description:
The model describes a basic hotel including bookings. It's designed as a starting
point for more comprehensive models.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 172 | 230

Extension: inventory
Purpose:
Basic functions to manage inventory

ER model:

Description:
The inventory model describes brands, products, product types as well as
inventory in an easy-to-use way. It allows users to various products and provides
generic ways to handle product attributes.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 173 | 230

Extension: training_courses

Purpose:
Manage trainers, training courses as well as customers.

ER model:

Description:
This model handles training related issues. Trainers can speak various languages
and are assigned to different types of training. Training can take place in different
locations, which are assigned to customers. Again this is a blueprint to develop
things into more complex models.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 174 | 230

Extension: gps_tracking
Purpose:
Manage GPS tracks

ER model:

Description:
Used to store vehicles (which can be a special category of vehicles). Those vehicles
are then assigned to GPS tracks. CYPEX can then visualize those tracks using
GeoJSON documents.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 175 | 230

Extension: exchange_rates

Purpose:
Handle exchange rates

ER model:

Description:
This module offers an easy way to store currencies as well as exchange rates.
Currency names can be translated to ensure multi-language support. The price is
stored for any point in time.
The currency_list extension is required for this module.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 176 | 230

Extension: team_list

Purpose:
Manage team lists

ER model:

Description:
The idea of this module is to give users the ability to store team lists. Employees
are assigned to a list of departments. Column lists can easily be extended.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 177 | 230

Extension: jour_fix

Purpose:
Handle TODO items and jour fix meetings

ER model:

Description:
The core idea is to give users the ability to handle TODO items coming out of
team meetings related to many different topics.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 178 | 230

Extension: conference_sponsoring

Purpose:
Manage sponsors and logistics for a conference

ER model:

Description:
Conferences can be challenging. This is especially relevant in case it’s necessary to
coordinate sponsoring as well as conference logistics. This model handles
conference sponsorship-related tasks and helps to store information about
conference logistics. Which items have been sent to which conference? What is
the tracking data? etc.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 179 | 230

Extension: todo_simple

Purpose:
Manage simple TODO items.

ER model:

Description:
TODO items are assigned to TODO types as well as to users who are supposed to
handle those items. It's a simple yet efficient model to store tasks.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 180 | 230

Extension: stock_ticker
Purpose:
Manage stock prices

ER model:

Description:
The stock ticker module has been modeled after the Yahoo Finance API. It can be
used directly to store data coming from this API.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 181 | 230

Extension: consulting_prices
Purpose:
Manage prices for engineers, depending on the region

ER model:

Description:
Often prices depend on regions, type of service and so on. The consulting_prices
extension contains an ER-model which reflects those aspects of pricing and
allows you to store prices depending on service types and region.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 182 | 230

Extension: rating_agency

Purpose:
A basic model to handle rating agencies

ER model:

Description:
A basic data model capable of storing information about rating agencies.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 183 | 230

Extension: bank_account
Purpose:
Store bank accounts

ER model:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 184 | 230

Description:
This model is a comprehensive module which is capable of managing bank
accounts as well as many aspects of infrastructure. It can handle:

● User logins
● Security questions
● Account types
● Interest rates
● Account status
● Failed transactions
● Error logs
● Employees
● Transaction types
● Transactions
● Accounts
● Customers

Sample data is available.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 185 | 230

Extension: simple_accounting
Purpose:
Accounting and invoicing

ER model:

Description:
This model contains a simple bookkeeping infrastructure which consists of
addresses, customers, invoice payments, invoices as well as invoice components
(“lines”). The presence of the PostgreSQL contrib package is needed to satisfy the
dependency on the citext extension (= “case insensitive text”).

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 186 | 230

Extension: support_customer
Purpose:
Managing support customers

ER model:

Description:
This module offers users the capability to handle support customers and
contracts.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 187 | 230

Extension: products_simple
Purpose:
Storing products and product categories

ER model:

Description:

Products can have various categories and can be assigned to attributes. Prices
can be in varying currencies and can be valid for different periods of time.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 188 | 230

Extension: salutations
Purpose:
Ready-made salutations

ER model:

Description:

The “salutations” module will provide a list of ready-to-use salutations (e.g. “Mr”,
“Mrs”, etc.). It helps to reduce the effort to store addresses and other person-
related data.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 189 | 230

Application Designer
The CYPEX Application Designer is a low-code development platform.
The designer provides a wealth of functionality which can be used efficiently to
quickly and easily build your application .

Let's discuss these elements in more detail and see how they can be used.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 190 | 230

Section: Main Menu - Menu Entries

The first element is the “menu editor”. It allows you to
modify various aspects of the application. It's of vital
importance. It allows you to adjust your menu items.
You can also handle software revisions. In this section,
we will guide you through these features and explain
step-by-step what can be done and which purpose
these features serve to create even better apps.

Create New Menu Entry

The first thing to understand is how to create new menu entries. Note that the
menu is highly dynamic. The default renderer will create one page per query.
However, this might not be your desired layout. You can modify the layout by
adding entries and assigning icons to those entries as shown below:

Note that there is drag-&-drop functionality in place, which allows you to flexibly
adjust the order of pages in the menu. You can move them around and change
them according to your needs.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 191 | 230

Section: Main Menu - Pages

It's also possible to create completely new, empty
pages. The second icon will help you to achieve
exactly that. Again, this is fully customizable.

Note that an alternative to completely new pages
is to use “incremental rendering”. The idea is that
you don’t have to start from scratch.

While new pages are ideal for dashboards,
completely empty pages can be more work in
case you want to build forms. In those cases,
incremental rendering presents a time-saving
alternative to a fully manual process.

Create New Page

Creating a new page is easy, as shown in the next listing:

Note the idea of passing parameters to the page. Why does it matter? Suppose
you want to have a page that shows all there is to know about a certain product.
CYPEX needs to know which product you’re talking about; a parameter is needed
to provide this info to the page. Passing parameters is a common process which is
highly relevant to most applications.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 192 | 230

Section: Main Menu - Current page

Managing the title of a page is done through
the “Identifier Label”. Often the title of a page
has to be dynamic. Perhaps you would like to
add the name of a product to the title or
perhaps you want to calculate some other
value, and use it as a page title. The “Page
Setup Manager” allows you to do exactly that.

If you want to have a specific title in the
header of the application (App Bar), you can
use the input “Custom Expression". This is
often used for pages which have an “Edit
form”.
If you set the "Identifier Label" to
location.queries.identifier,
the app bar will contain a title such as:

"Inventory > Edit Inventory > 1" where "1" is a return value of
location.queries.identifier.

In general, you can use any custom JavaScript expression here. However, it's also
possible to use static text containing the desired value.

MetaElements: Hidden fields

A page might consist of more than meets the eye. Often a data source is needed
to calculate the behavior of a page. Maybe you only want to display a table
containing notifications in case some threshold has been reached. Or maybe you
want to control the color of a text field depending on some numbers coming
from various data sources.

In those cases you'll need MetaElements
which are basically hidden data sources
(“hidden fields”). MetaElements are
elements that don’t have a position on the
page but can be used to fetch data. This is
especially important if you are using custom
expressions.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 193 | 230

Select a data source and optionally set a filter:

The filter might be of key importance because it allows you to expose only a
subset of data which can increase performance and make things more secure.

Once the customer data source has been created, you can use this MetaElement
inside a custom expression. Note that the data source is otherwise not visible on
the page - all we have done is to make the page aware of this data source.

The following screenshot shows how:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 194 | 230

Section: Main Menu - Queries
Queries represent the data sources that actually field your page. In CYPEX every
defined in the model builder is usable in the GUI to provide data for some

graphical element. Of course this is only true
in case you have enough permissions.

The point is: Without queries it's impossible to
display anything on your screen. To avoid
constant switching between the admin panel
and the graphical editor you can get an
overview of your queries and their definition in
a dedicated menu.

If you click on the symbol in the right hand
side of the query the tool will open a visual
representation of your query, so that you can
see how it has been defined and what data it
contains.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 195 | 230

Query Details

The query details might look as follows:

Note that you’ll also see which (if any) field is used as an identification field. Those
fields are a kind of primary key for your query and help you to identify the rows
you need, quickly and easily. Many graphical elements such as form need those
identification fields to ensure that the correct row is updated in case a change is
made to the data.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 196 | 230

Section: Main Menu - History

In this section:

● History
● Releases

Why do they matter? Every change made to a CYPEX app isn't lost - all changes
will be tracked and you can always return to a prior state. However, not all prior
states are created equal:

History

First, let’s talk about the history tab: It allows
you to see all prior versions. You can go back
to any previous version by clicking on it and by
following the instructions.

Note that if you go back in time, changes that
happened later will be lost forever. You need
to keep that in mind to avoid destroying
valuable work.

Here is what it will look like if you attempt to go back in time to get rid of
undesired changes that happened later (e.g. new bugs, wrong approaches, etc.):

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 197 | 230

Releases

Releases are an important part of CYPEX. You can turn the current version into a
release, which tells the system that it is now dealing with a stable,
production-ready release of the software:

Releases can be tested and then published for end users. Releases are therefore
stable versions of your software:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 198 | 230

Section: Main Menu - Style

The next important feature in the life of an application is its styling which will
provide end users with the desired look and feel, and ensure that CI (Corporate
identity) is maintained.

The last tab will guide you through the styling
process. Select your desired colors and use the
logos of your choice to ensure a consistent look
across all your applications.

The logo is usually required by the customer.
However, there are many more options, including
custom CSS.

Custom CSS

The default layout is suitable for many applications.
However, often it's necessary to support custom
CSS. The way this works is as follows: Elements can
be selected via special HTML attributes, namely
data-cypex-element-id and
data-cypex-element-type.

Here is an example:

[data-cypex-element-type="default_table"] tr td:first-child {
background: lightblue;

}

[data-cypex-element-type="default_markdown_field"] {
color: "#777",

}

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 199 | 230

[data-cypex-element-type="default_internal_link_button"]
button:hover {

filter: contrast(2.5),
}

Of course there are limits to what is feasible. However, the most common
changes are perfectly feasible and supported by the tooling.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 200 | 230

Section: Top bar
Now let's focus on the top bar and see what can be done there:

Section: Top bar - Icons

Let's tackle the icons bar at the top first. There are a couple of icons there which
are relevant to the end user:

In the first line, the “bell” symbol will inform you about pending notifications.
CYPEX notifications are stored in a table. In case a notification is marked as
unread, the bell symbol will light up and notify end users.

The question mark symbol will display general information about the application
you’re using. For example, you can see which release you’re using.

Changing the desired language can be done with the next icon in the list. By
default, the language of choice is English. However, additional languages can
easily be added as needed.

Finally, switch to the admin panel and exit the edit mode of the WYSIWYG editor.

Let's now focus attention on the second list of icons: The blue icons in the middle
of the screen allow you to hide the panel on the left as well as the panel on the
right side. This is necessary to figure out what the application looks like.

The next button (currently in gray) allows you to quickly create a release. Usually
you save changes and then turn them into releases. However, you can also go the
direct route and create releases more quickly. This is especially important in case
hotfixes have to be deployed.

The “disk button” saves the current changes but doesn’t create a new release. It
should be used to save incremental changes which aren't supposed to make it to
the end user directly.

Finally, you can revert your latest changes, and preview changes without leaving
the edit-mode.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 201 | 230

Section: Tool box

The Tool-Box section is the most important section in the application designer.
All available design elements are listed, and can be configured easily using our
graphical interface. All items offer drag & drop support and can be flexibly placed
in the grid.

Basically, the toolbox section consists of three parts which allow us to compile a
user interface efficiently:

Design elements

A list of all GUI elements currently available in CYPEX. There is everything from
input elements to graphs and GIS elements.

Design element attributes

In case a design element is chosen, users are able to configure it. Depending on
the type of GUI element you'll see different configuration parameters. What
unifies those items is that data usually comes from a data source (“query”).

Copied design elements

The editor allows you to copy as simple as well as complex, nested elements. As
objects can be nested it can be quite hard from time to time to understand what
is actually copied and what isn't. The “copied design elements” overview allows
you to more quickly gain an overview of what is copied and what can be inserted
at some other place in your application.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 202 | 230

CYPEX internals
In this section, you’ll be guided through the internals of CYPEX. You'll get to know
the basic architecture of the solution and gain some insights into how things
work. It helps to understand some basic concepts, in order to use CYPEX even
more efficiently.

CYPEX software architecture
Before we look at the architecture of a CYPEX app from an end user perspective,
we first want to understand the overall software layout:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 203 | 230

Delivering CYPEX
CYPEX is delivered as a set of Docker containers, which makes deployment easy
and efficient. In general, CYPEX can run on top of an existing, standard
PostgreSQL database. There are no dependencies on external extensions.

NOTE:
CYPEX does support GIS data types provided by PostGIS, but that’s
the only extension which is (optionally) needed. (No hard
requirements).

CYPEX consists of the following containers:

● CYPEX GUI
● CYPEX API
● CYPEX data API
● CYPEX database

Let's take a look at each of these containers in a bit more detail.

CYPEX GUI (“renderer”)
The CYPEX GUI container contains the end-user side of the tool chain. It contains
a single web application and is the main entry point for all end-users. This is what
is generally known as “the renderer”.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 204 | 230

The way it works is that it fetches a JSON document describing the application
from the backend and turns it into a usable application in the browser. As
previously stated, a CYPEX app is basically a giant JSON document describing the
page and its interaction with the world.

As part of the container, we ship nginx, which acts as a reverse proxy for APIs. We
use OpenResty to serve static data.

The following technologies are used.

Technology:
● TypeScript
● ReactJS
● ReduxJS
● Redux-Sata
● nginx
● OpenResty

Let's now focus on the way CYPEX handles data.

CYPEX API

There are two basic APIs: The CYPEX API and the CYPEX data API. The CYPEX API
provides the the following functionality:

● Authentication services
● List of available apps
● Application definitions
● Meta data
● Administration functionality

The CYPEX API provides basic infrastructure and
handles non-app related data using a standard REST
interface (JSON).

Technology:
● TypeScript
● nodeJS

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 205 | 230

CYPEX data API

The CYPEX data API is used to serve application data. Every piece of end-user data
will come from this side and not from the internal APIs.

Why is that necessary? PostgREST generates the API automatically from the
database. This is due to various reasons:

● CYPEX is standard-compatible
● It relies on standard tooling
● Automatic documentation of app side
● Reliable and battle-tested

PostREST exposes exactly one schema as an auto-generated API. That’s one (but
not the only) reason why CYPEX uses views to abstract access to data. Using views
exposed as a single schema by PostgREST, you can …

● Handle security better (no need to modify permissions on base tables)
● Support apps working on multiple schemas
● Be more robust when it comes to changing column names, etc.

PostgREST is standard software widely used in the community.

CYPEX database
Finally, there’s the database container. Strictly speaking, any PostgreSQL
database is fine. However, to improve the user experience we will also ship
PostgreSQL as part of the entire package. This makes it a lot easier for people who
aren't yet running PostgreSQL at scale.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 206 | 230

https://postgrest.org/en/v8.0/tutorials/tut0.html

Upgrading CYPEX

If you want to upgrade, all you have to do is to run new containers. Usually no
further action is needed. However, we will provide change scripts in case they’re
necessary in order to upgrade.

Please contact our support team for further information.

CYPEX internal data structure
In this section, we’ll dive into the SQL structure of CYPEX itself and learn how data
is stored inside the tooling. Here is the main data structure:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 207 | 230

The purpose of the tables above is as follows:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 208 | 230

Table cypex_api_internal.t_user
In CYPEX, there are three different types of users:

● Standard PostgreSQL Users
● Integrated users
● LDAP users

It can also be the case that a PostgreSQL user in the background is mapped to
various email addresses in the frontend for authentication purposes.

Table t_file, t_filegroup, t_file_type:
CYPEX allows users to upload files. Since it’s vital to maintain transactional
integrity and expose those files via a REST interface, you can’t just store them in a
directory. Files in a filesystem can hardly be protected and in that case, you
couldn’t properly handle permissions. In addition to that, it’s important to
maintain the ability to back up an entire CYPEX deployment using a single
database backup.

Therefore all files are stored in a table (t_file). In CYPEX, files have types and belong
to groups. This is allows it to handle groups and permissions more easily and in a
more organized way.

Table t_language
CYPEX supports various languages. The language table contains the supported
languages. The table is mainly used to ensure referential integrity across the
system. Note that not all texts are stored on the database side. Some texts are also
part of the JSON document sent to the rendering engine.

Table t_module
CYPEX is structured in 3 levels. Note that the levels aren't immediately visible to
the end user. Behind the scenes, we have a hierarchy of “Modules -> Objects
(“tables CYPEX is keeping track of”) -> Objects views (= “queries”).

The t_module table is the fundamental building block to represent this hierarchy
at the database level.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 209 | 230

Table t_object
Objects are basically “tables CYPEX is tracking”. Tables are a fundamental building
block of any relational database. It can very well be the case that a single
relational model is the foundation for more than one CYPEX application.
Therefore an application has to know which tables to track in order to store
metadata (column names, etc).

At the object level, CYPEX also tracks whether workflows and constraints are
enforced inside the metadata. CYPEX enforces workflows by deploying triggers
and constraints on the underlying tables.

Table t_object_field
CYPEX needs a lot of metadata to fuel the default rendering process. Therefore a
lot of information about fields is stored in the t_object_field table. This includes,
but isn't limited to: field names, field orders, visibility, etc.

Table t_object_state
In case workflows are enabled for an object, we need to store the states an object
can have (“Status” in the GUI example - see the section “Creating Workflows”
above). As an example: A contract can be “offered”, “signed”, “rejected” and so on.
The states associated with an object are in t_object_state. States can be added on
the fly using the CYPEX GUI.

Table t_object_view
The CYPEX core engine knows the concept of “object views”. To the end user
“object views” are presented as “queries” in the model builder. The idea is to have
an abstraction layer between tables and the way data is presented. This is
especially important in case of aggregations, default filters and alike. Metadata is
associated with every object view (names, translations, etc.).

Table t_object_view_field
Similar to the way object columns are treated, we also keep track of object view
columns. Object views (= queries) can have completely different columns than the
underlying object does. (As an example, think of aggregations)..

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 210 | 230

Table t_state_change

States are the foundation of every workflow. State changes are a way to move
from one state to another. Somebody might move a contract from “offered ->
signed” (= ”sign”) - but not from “signed -> offered”. Control this using database
side constraints.

However, often the next state has to be calculated using functions. The way to do
that is to use “pre-funcs” and “post-funcs”. The “pre-func” is called before a state is
left (to determine where to go in the state machine). The post-func is called
before entering the target state. We use standard PostgreSQL stored procedures
to handle this behavior.

Note that the GUI does not fully support this concept yet.

Table t_state_requirement
It can happen that states need certain preconditions. As an example: A contract
can only be in state “signed” if there is pricing information entered and so on. The
t_state_requirements table defines which of those requirements have to be met.

Table t_text

Texts can be assigned to pretty much everything. This includes objects, columns,
states, state changes and a lot more. In CYPEX, all configuration tables share a
common sequence, providing us with a system-wide unique ID. The advantage is
that every piece of information can be identified clearly in a unique way. Therefore
it's easy to attach texts in various translations to everything stored in the database.

The t_text table is the place to store all those translations for all objects in the
CYPEX metadata.

Table t_ui
A single database might serve more than just one UI. Let's imagine a webshop:
The end user part (“customers”) will run application A while backoffice people will
operate using application B. Both applications will access the same underlying
data.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 211 | 230

The way we represent that in CYPEX is by allowing multiple GUIs for the very
same data to exist at the same time. In general, GUIs can be assigned to roles
which means that a group of people can share the same graphical user interfaces.

Table t_ui_history
To allow for proper versioning all histories of graphical user interfaces are kept.
This allows CYPEX to support releases, which allow superusers/admins to change
applications while they are actually in use.

Security-related data structures
So far, we’ve discussed application-related metadata. In this section we’ll use

Table t_user

We’ve already discussed internal users. However, there is more: You can map
internal users to database users, as shown in this ER diagram:

But the story isn't as simple as it might seem:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 212 | 230

Table t_user_ldap

In case LDAP authentication is enabled, you have to map LDAP users to internal
users (= database side). You need LDAP support to handle single-sign-on.

Table t_user_integrated

Integrated users support the idea of allowing multiple logins mapping to the
same PostgreSQL user. Keep in mind that permissions on the “CYPEX Data API”
side are controlled by the PostgreSQL user side. By defining an integrated user,
it’s possible to map various logins to the same backend user. The same is true for
LDAP as well.

Table cypex_log.t_user
In CYPEX, security is of the utmost importance. Therefore all access to the
application is tracked and audited. The cypex_log schema facilitates tracking and
auditing.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 213 | 230

Application structure
This section includes a brief description of the underlying architecture used by
CYPEX. It's presented from an end-user point of view. It’s based on PostgreSQL,
and stores a lot of metadata inside the database. This includes:

● Workflow definitions
● Object descriptions
● Pre-rendered definitions
● User mappings

All other components are controlled based on this information. The end product
is a JSON document, which is sent to the client. The information is then rendered
on the client. To make the process efficient, the JSON document is pre-computed
and stored in PostgreSQL as well.

Let's take a look at the basic architecture:

As mentioned above, the “end product” is a JSON document rendered by the
browser. To produce this document, we use middleware which creates the
desired data. The core idea is to have everything ready for immediate use, to
maintain good performance.

Fetching data is done using an API interface which is generated by inspecting the
data model as well as the server side code. The API can also be accessed directly
in case you want to write custom code.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 214 | 230

State machine internals
Let's spend some time on the internals of the state machine. Basically all this
metadata is stored in tables which can be found in the “cypex” schema. The state
machine will create triggers on the data tables to ensure that data has to be
correct on all levels.

Keep in mind: Most people will access data directly using their web browser.
However, it’s also possible to just skip the GUI and talk to the API generated by
CYPEX directly. Therefore it’s possible to enforce constraints, permissions and alike
at the lowest level possible. It’s necessary to make absolutely certain that nobody
can evade the business rules enforced by the model.

The integrity of data is one of the most important assets of a professional
relational database. Therefore we do everything to protect your data. Let's have a
look at an example: If an invoice is either “paid” or “unpaid”, we do not allow
“maybe” or “who knows”. At the end of the day, you want to be “paid” and CYPEX
enforces data integrity by all possible means. Fortunately, PostgreSQL provides us
with the transactional foundation we need to actually do that. All layers built on
top of PostgreSQL (= GUI, API, etc.) will automatically inherit PostgreSQL’s
restrictions and business rules.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 215 | 230

To show you what this means in real life, we’ve included a code snippet:

cypex=# \d todo.t_todo
Table "todo.t_todo"

Column | Type | Collation | Nullable | Default
-----------+---------+-----------+----------+--------------------------------
id | integer | | not null | nextval('todo.t_todo_…)
tstamp | date | | | now()
todo_item | text | | not null |
status | text | | | 'created'::text
Indexes:

"t_todo_pkey" PRIMARY KEY, btree (id)
Check constraints:

"cypex_761c0b39d568e31024e53b9c3eadb8c5" CHECK (status = ANY
('{created,accepted,success,failed,rejected}'::text[]))
Triggers:

zzz_e92d74ccacdc984afa0c517ad0d557a6 BEFORE INSERT OR DELETE OR UPDATE ON
todo.t_todo FOR EACH ROW EXECUTE FUNCTION cypex.trig_enforce_state_change('status')

As you can see, CYPEX generates a trigger with a unique name to ensure
consistency and enforces those states’ changes. It comes with some performance
penalty, but is necessary to maintain integrity. Also keep in mind, if workflows are
changed AFTER loading a lot of data changes to the workflow, it might be time
consuming - because PostgreSQL has to revalidate those constraints.

We strongly advise CYPEX users against changing those constraints manually.
Instead, use the CYPEX-internal functions to make sure that the metadata catalog
stays consistent.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 216 | 230

User management
A high level of protection must be assured of your data. We put great emphasis
on security, and ensure that data is protected at all times. As part of that, our user
management is based on a solid, well-tested user concept.

Understanding the CYPEX user concept
The first question we have to answer when talking about security is: “What is a
user?”. Having a clear picture in mind is important to understand the big picture.

There are three basic types of user authentication:

● Case A: “Database user” equals “application user”
● Case B: “Database user” is mapped to a “login user”
● Case C: “Database user” is mapped to single-sign on users

In the first case, life is fairly simple: You can log into an application using the same
name and password as your database user. For many basic applications, this is
perfectly fine.

However, sometimes (Case B) you are facing the situation that various “login
users” should point to the same database role.

Here is an example: jane@example.com and jack@example.com are both fulfilling
the role of “bookkeeper”. We definitely want to separate the logins, but behind the
scenes, they have the same permissions. In small companies, this is usually the
default way of handling things.

To map login names to database users, you use the CYPEX admin panel to
achieve the proper configuration.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 217 | 230

mailto:jane@example.com
mailto:jack@example.com

Case C is the most “enterprise-ready” way of handling user authentication. CYPEX
is able to handle generic modules to map CYPEX internals to external systems,
which allows us to connect to systems usually used for single-sign on (LDAP,
ActiveDirectory, etc). There are a variety of ways to connect to single-sign on
systems: First of all, you can use PostgreSQL onboard, which means using
authentication and the “Case A”-style.

Depending on your infrastructure, various levels of complexity and customization
of the authentication module might be required.

In general, it's always advisable to strongly focus on database-side permissions. In
particular, PostgreSQL Row-Level-Security has proven to be a valuable asset in
real-world applications.

Changing Password

It makes sense to change passwords on a regular basis. In this section you'll learn
how to perform such a task and which features are supported by CYPEX:

Changing our own password

The first thing to look at is how to change your own password. To do that, click on
the user profile icon on the right side of the panel. A small overlay will appear and
a click on the “SETTINGS” button opens the “change password” form.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 218 | 230

To change the password, type in the “New Password” field.

The new password will be active instantly. However, active sessions will not be
terminated unless a user proactively logs out. As long as the JWT (= JavaScript
Web Token) is valid, users can continue working normally.

Changing passwords as admin for other users

In addition to changing your own password, superusers can also change other
users’ passwords quickly and efficiently. In the “authentication” section of the
CYPEX admin panel you can click on “users”. There you'll find a list of users:

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 219 | 230

By clicking at the “pen” you'll find your way to the desired form which allows you
to change the password easily. Again, changing the password isn't going to
terminate existing sessions:

Please ensure that passwords are sufficiently strong. At the moment, CYPEX does
not enforce password rules. The reason is that the PostgreSQL protocol is
implemented in a way that the server never sees the plain-text password.
Therefore, we cannot guarantee the strength of the password on the server side.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 220 | 230

Known bugs and pending
improvements
In this section we’ll discuss known bugs as well as features which are still missing
and which might be implemented in the foreseeable future.

Security features

This section will discuss missing security related features which will be added to
CYPEX in the future to make the product more comprehensive.

Ability to create nested roles

Currently it's possible to create database roles in the admin panel. However, it's
not possible to assign those roles to other roles yet. We’ll fix this in the future and
make the feature more complete.

Provide an overview of permissions

In the future we’ll provide an easy-to-use overview to give developers a better way
to keep track of permissions. In addition to a complete list, we’re planning to
create a diagram.

View handling
The following view-related issues are known and should be kept in mind to
ensure smooth operation of CYPEX. Note that “queries” in CYPEX are stored as
views on the database level to ensure dependency tracking as well as security
abstractions.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 221 | 230

CREATE VIEW … WITH CHECK OPTION

Currently CYPEX doesn’t use “WITH CHECK OPTION”. Why does it matter?
Suppose you get a query that only shows “data in your country”. In case the query
is simple, PostgreSQL will make it “auto-updatable” which means that you can
INSERT, UPDATE, and DELETE. However, without the “WITH CHECK”-option you
can theoretically insert data which cannot be seen later anymore (by adding data
not in your country). This will be fixed in the future.

Views and dependencies

Since we’re using views to abstract the underlying data model from the GUI side
of the app, you need to be aware that PostgreSQL will drop cascading objects.
This is relevant because it can remove the data source needed by your app.

We are currently working on code to make dependency tracking easier and more
transparent.

Security barrier views

At the moment we don’t use “security barriers” views for efficiency reasons. We
therefore recommend not using stored procedures which make extensive use of
RAISE NOTICE. Also make sure that functions which have side effects or use
RAISE NOTICE are checked and marked as NOT LEAKPROOF.

Data type handling

Currently the “interval” data type isn't fully supported under every circumstance.
Therefore “interval” is mostly seen as text and does not offer any additional
functionality which might be desired.

We’re working to remove this limitation.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 222 | 230

GIS data handling

CYPEX supports GIS data. However, to render GIS data in the GUI, the query you
are using has to provide the frontend with a GeoJSON.

There are currently two options to handle this:

● Create a GeoJSON as part of a query
● Use a ready-made GeoJSON column inside the underlying tables

Since GeoJSONs aren't automatically generated by the default rendering process,
you need to generate them as part of the query. The following queries contain
examples which show how this can be done:

select
inspection.id,
tv.license_plate,

tv.vehicle_model_id,
tv.registered_country,
ST_AsGeoJSON(gps_pos)::jsonb gps_pos,
x.server_tstamp tracked_at,
inspection.tstamp inspected_at,
inspection.base_station_id,
inspection.inspection_type_id,
inspection.aggregate_status

from backoffice.t_vehicle tv
left join backoffice.t_vehicle_gps_device tvd
on (tv.id=tvd.vehicle_id)

left join lateral
select

g.id,
g.gps_pos,
g.server_tstamp

from gps_track.t_track AS g
where

g.device_code = tvd.gps_device_id and
g.server_tstamp > g.server_tstamp - interval ''1 week''

order by g.server_tstamp desc LIMIT 1) x on true,
lateral (

select
ti.id,
ti.base_station_id,
ti.tstamp,
ti.inspection_type_id,
ti.aggregate_status

from backoffice.t_inspection ti
where

ti.vehicle_id = tv.id and
ti.inspection_state = ''clean''

order by ti.tstamp desc limit 1
) as inspection,
backoffice.t_inspection_type tit

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 223 | 230

where
inspection.inspection_type_id=tit.id and
tit.inspection_type = ''rent_out'' and
(tvd.active is null or tvd.active)

order by inspection.tstamp desc
SELECT

json_build_object(
'type', 'FeatureCollection',
'features', data_danger_zone.tracks || ST_AsGeoJSON(data_danger_zone.*)::jsonb

) danger_zone_tracks
from (

select py.area_name as name,
py.polygon as geom,
jsonb_agg(ST_AsGeoJSON(pt.*)::jsonb) as tracks

from (
select vlt.license_plate, vlt.server_tstamp, vlt.gps_pos

from cypex_generated.v_vehicle_latest_gps_track vlt
) as pt

JOIN (
select a.*
from

backoffice.t_danger_area a,
backoffice.t_area_type b

where a.area_type_id=b.id and b.area_type = 'danger_area'
and now() between a.active_from and a.active_until

) py ON ST_Intersects(py.polygon, pt.gps_pos)
group by py.area_name, py.polygon

) as data_danger_zone

In this case, we used the ST_AsGeoJSON function to do the magic. But here's one
more example:

with stations_fence as (
select

ST_Union(ST_Buffer(ta.gps, 50000)::geometry) as fence
FROM backoffice.t_base_station tbs inner join backoffice.t_address ta

on (tbs.address_id=ta.id)
), violated_tracks as (

select
jsonb_agg(json_build_object(

''type'', ''Feature'',
''geometry'', ST_AsGeoJSON(tt.gps_pos)::jsonb,
''properties'', json_build_object(
''license_plate'', tv.license_plate,
''registered_country'', tv.registered_country,
''tracked_at'', tt.server_tstamp

)))::jsonb as tracks
from

gps_track.t_track tt inner join
backoffice.t_vehicle_gps_device vd on (tt.device_code = vd.gps_device_id)
inner join backoffice.t_vehicle tv on(vd.vehicle_id=tv.id),
stations_fence

where
not ST_Intersects(stations_fence.fence, tt.gps_pos)
and tt.server_tstamp > tt.server_tstamp - interval ''1 month''

)
select

violated_tracks.tracks || ST_AsGeoJSON(stations_fence.fence)::jsonb

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 224 | 230

as violated_tracks
from stations_fence, violated_tracks

Take note that in case of a default query (= “SELECT * FROM tab”), you don’t have
to worry about INSERT, UPDATE, and DELETE. PostgreSQL knows that the view is
auto-updatable and you don’t have to add additional code. However, this isn’t true
in case of a query that generates a GeoJSON.

A trigger has to be added on top of the query (= view) to teach PostgreSQL how to
modify data. Note this view isn't auto-updatable anymore, and therefore the way
back to the table has to be defined by developers.

The following listing shows how such triggers can be made:

CREATE OR REPLACE FUNCTION danger_area_fn() RETURNS TRIGGER
AS $$

DECLARE
_polygon backoffice.t_danger_area.polygon%type;
new_return record;

BEGIN
if new.polygon isn't null then

select ST_GeomFromGeoJSON(coalesce(new.polygon::json->'features'->0->'geometry',
new.polygon::json)) into _polygon;

end if;
IF (TG_OP = 'INSERT') THEN

INSERT INTO backoffice.t_danger_area(
area_name,
polygon,
reason,
active_from,
active_until,
area_type_id

) VALUES (
new.area_name,
_polygon,
new.reason,
new.active_from,
new.active_until,
new.area_type_id

);
select

* into new_return
from cypex_generated.v_backoffice_t_danger_area
where id = currval('backoffice.t_danger_area_id_seq'::regclass);
return new_return;

END IF;
IF (TG_OP = 'UPDATE') THEN

UPDATE backoffice.t_danger_area SET
area_name = new.area_name,
polygon = _polygon,
reason = new.reason,
active_from = new.active_from,
active_until = new.active_until,
area_type_id = new.area_type_id

WHERE id=new.id;

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 225 | 230

return new;
END IF;
IF (TG_OP = 'DELETE') then

delete from backoffice.t_danger_area where id = old.id;
END IF;
return null;

END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER t_danger_area_trigger
INSTEAD OF INSERT OR UPDATE OR DELETE ON cypex_generated.v_backoffice_t_danger_area
FOR EACH ROW
EXECUTE PROCEDURE danger_area_fn();

If you want to know more about triggers in PostgreSQL, check out the
PostgreSQL documentation..

ER-model related issues
At this point it's not yet possible to create data models from scratch inside the
admin panel. We’re working hard to fix this issue in the next release.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 226 | 230

Missing model creation

You'll soon be able to create models from scratch and you'll be able to define
triggers on “queries” to make it easier to insert and update more complicated
operations. You will also make better use of the information available inside the
data model during default rendering.

Workflows and foreign keys

At the moment, foreign keys are defined on columns. In case states are derived
from a column, take all existing values from this column. However, you often may
be in a 1:n relationship, with the workflow playing out on the “n” side of the foreign
key relation.

In future releases we will allow the workflow to take all possible keys from the “1”
side of the join as the “n” side might not contain all values known to the “1” side of
the relation.

Alternatively you should be able to specify some kind of data source to fetch all
possible states from the existing model (especially important in case you’re
dealing with more transitive or more complex models in general).

Pre-func and post-func enabled workflows

At this point you can transition from one state to the other. However, what if state
changes should only happen under certain conditions? Let’s take a look at an
example: A person applies for a bank loan. The loan is only granted in case some
more complicated calculations give the OK. Currently it's possible to do this using
triggers. However, in the future our team will integrate this with workflows more
tightly. The idea is to use “pre-funcs” and “post-funcs”. A pre-func will be called
shortly after leaving a state to determine the target state (= loan will be granted or
rejected based on some other data).

Graphical user interface
In this sectionwe'll discuss bugs and missing features related to the graphical user
interface designer.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 227 | 230

Multiple file uploads
At this point files have to be uploaded one by one. Multi-file uploads are currently
not working. However,we'll support this feature in the future.

Handling of password fields
At the moment CYPEX does not support HTML password fields. HTML Password
fields do not show “letters” but use “dots” to hide the password. This will most
likely be changed in the future.

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 228 | 230

Glossary

abstraction layer software that translates higher-level
requests into lower-level commands the
computer can use (for example, an API, or
Application Programming Interface, is an
abstraction layer which communicates
between an application and the operating
system.)

FDW Foreign Data Wrapper: “a library that can
communicate with an external data
source, hiding the details of connecting to
the data source and obtaining data from
it.”
source: PostgreSQL Documentation

GUI Graphical User Interface: the software
which allows users to visually control an
underlying data structure, as opposed to a
command-line interface, which requires
the user to memorize text-based
commands.

JSON JavaScript Object Notation is a common
data format used to exchange data, i.e.
between web applications and servers.

JSON is a language-independent data
format. JSON file names use the extension
.json.
source: Wikipedia

relational model “The relational model (RM) for database
management is an approach to managing
data using a structure… where all data is
represented in terms of tuples, grouped
into relations… Users directly state what
information the database contains and
what information they want from it, and
let the database management system
software take care of describing data
structures for storing the data and retrieval
procedures for answering queries.”
source: Wikipedia

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 229 | 230

https://www.postgresql.org/docs/current/ddl-foreign-data.html
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Relational_model

CYBERTEC PostgreSQL
International (HQ)

Gröhrmühlgasse 26
2700 Wiener Neustadt
Austria
Phone: +43 (0)2622 93022-0
E-Mail: sales@cybertec.at

CYBERTEC PostgreSQL
Switzerland

Bahnhofstraße 10
8001 Zürich
Switzerland
Phone: +41 43 456 2684
E-Mail: sales@cybertec.at

CYBERTEC PostgreSQL
Nordic

Fahle Office
Tartu mnt 84a-M302
10112 Tallinn
Estonia
Phone: +372 53070910
E-Mail: sales@cybertec.at

CYBERTEC PostgreSQL
Poland

Aleje Jerozolimskie 93
HubHub Nowogrodzka
Square, 2nd floor
02-001 Warsaw
Poland
E-Mail: sales@cybertec.at

CYBERTEC PostgreSQL
South America

Misiones 1486
oficina 301
11000 Montevideo
Uruguay
E-Mail: sales@cybertec.at

CYBERTEC PostgreSQL
South Africa

No. 26, Cambridge Office
Park
5 Bauhinia Street, Highveld
Techno Park
0046 Centurion
South Africa
Phone: +27(0)012 881 1911
E-Mail: africa@cybertec.at

CYBERTEC WORLDWIDE

AUSTRIA | SWITZERLAND | ESTONIA | POLAND | URUGUAY | SOUTH AFRICA
Page 230 | 230

