
 CYBERTEC PGEE
 INSTALLATION GUIDE FOR REDHAT

 Date : 2024-11-09
 Publisher: CYBERTEC PGEE team

 TABLE OF CONTENTS

 PGEE: COMPREHENSIVE DATABASE SECURITY .. 3
 SUPPORTED PGEE MAJOR VERSIONS AND OPERATING SYSTEMS 4

 INSTALLATION GUIDE ... 5
 STEP 1: ACCESS THE RPM REPOSITORY ... 5
 STEP 2: DISABLE STANDARD POSTGRESQL ... 5
 STEP 3: SETTING UP THE REPOSITORY ... 6

 INSTALLING THE DEMO REPOSITORIES .. 6
 ENABLING THE ENTERPRISE REPOSITORIES .. 6

 STEP 4: INSTALL PGEE FROM THE REPOSITORY .. 7
 STEP 5: CREATING SAMPLE KEYS ... 9
 STEP 7: CREATING THE DATABASE INSTANCE .. 10
 STEP 8: STARTING YOUR PGEE INSTANCE ... 11

 STARTING PGEE MANUALLY ... 11
 STARTING PGEE USING SYSTEMD .. 11

 STEP 9: VERIFYING ENCRYPTION .. 12
 MANAGING KEY INTEGRATION ... 13

 CYBERTEC PGEE KEY MANAGER .. 14
 UPGRADING FROM POSTGRESQL TO PGEE ... 15

 STEP 1: MAKE SURE POSTGRESQL AND PGEE ARE INSTALLED 15
 STEP 2: RUN UPGRADES TO TRANSITION TO PGEE ... 16

 COPYING EXISTING DATA DURING UPGRADES ... 17
 UPGRADES WITHOUT COPYING THE DATA ... 18
 VERIFY THE UPGRADE .. 20

 STEP 3: ENCRYPTING YOUR PGEE INSTALLATION ... 21
 STARTING THE REPLICATION PROXY ... 22

 STEP 4: VERIFYING YOUR INSTALLATION .. 24
 SUPPORT AND GETTING HELP .. 25

 REQUESTING HELP .. 25

 2

 PGEE: COMPREHENSIVE DATABASE SECURITY
 CYBERTEC PostgreSQL Enterprise Edition (PGEE) is a CYBERTEC product which has
 been designed for enterprise-grade security in critical environments that require
 additional security as well as regular auditing. This solution focus heavily on
 compliance and business critical workloads for various industries, including but not
 limited to:

 ● Banking and ûnancial services
 ● Governments and defense
 ● Critical national infrastructure
 ● Business-critical missions

 Ensuring security is key and therefore our ûrst priority is to provide customers with
 encryption at every level while providing cutting edge performance.

 3

 PGEE offers comprehensive database security and provides the necessary tooling to
 enable enterprise success, focusing on these key aspects:

 ● Encryption at every level
 ● Secure software development
 ● Auditing and certiûcation

 This document describes how PGEE can be installed on RedHat/RPM based
 operating systems (RHEL, Rocky Linux, etc.). The following operating systems are
 currently available and supported:

 SUPPORTED PGEE MAJOR VERSIONS AND OPERATING
 SYSTEMS

 ● PGEE 17 based on PostgreSQL 17
 ● PGEE 16 based on PostgreSQL 16
 ● PGEE 15 based on PostgreSQL 15
 ● PGEE 14 based on PostgreSQL 14

 ● RedHat RHEL 9 and derivatives, x86_64
 ● RedHat RHEL 8 and derivatives, x86_64
 ● SUSE SLES 15 , x86_64

 Additional operating systems and CPU architectures are supported on request.

 4

 INSTALLATION GUIDE
 This section contains a detailed step-by-step guide. After the CYBERTEC team has
 opened the repositories for you, follow the next steps as described in this document:

 STEP 1: ACCESS THE RPM REPOSITORY

 The RPM repositories can be found here:

 https://repository.cybertec.at

 Additional instructions can be found in the repository.

 STEP 2: DISABLE STANDARD POSTGRESQL

 Before installing PGEE we have to disable the onboard PostgreSQL packages to
 ensure that only the PGEE service is running.

 Execute the following command:

 $ sudo dnf module disable -y postgresql
 AlmaLinux 9 - AppStream 7.5 kB/s | 4.2 kB 00:00
 AlmaLinux 9 - AppStream 9.8 MB/s | 16 MB 00:01
 AlmaLinux 9 - BaseOS 9.4 kB/s | 3.8 kB 00:00
 AlmaLinux 9 - BaseOS 9.9 MB/s | 17 MB 00:01
 AlmaLinux 9 - Extras 8.0 kB/s | 3.3 kB 00:00
 AlmaLinux 9 - Extras 39 kB/s | 20 kB 00:00
 Extra Packages for Enterprise Linux 9 - x86_64

 247 kB/s | 46 kB 00:00
 Extra Packages for Enterprise Linux 9 - x86_64

 11 MB/s | 23 MB 00:02
 Dependencies resolved.
 ==
 Package Architecture Version Repository Size

 ==
 Disabling modules:
 postgresql

 Transaction Summary
 ==
 Complete!

 Once this is done we can proceed with the installation.

 5

 STEP 3: SETTING UP THE REPOSITORY

 In the next step we have to enable the PGEE repository and make sure we have
 access to the packages.

 Two options are available:

 ● PGEE demo version, limited to 1 GB per table
 ● PGEE full version

 INSTALLING THE DEMO REPOSITORIES

 The demo version can be installed as follows:

 $ version=16
 $ sudo tee /etc/yum.repos.d/cybertec-pg$version.repo <<EOF
 [cybertec_pg$version]
 name=CYBERTEC PostgreSQL $version for RHEL/CentOS \$releasever - \$basearch
 baseurl=https://repository.cybertec.at/public/$version/redhat/\$releasever/\$basearch
 gpgkey=https://repository.cybertec.at/assets/cybertec-rpm.asc
 enabled=1
 EOF

 ENABLING THE ENTERPRISE REPOSITORIES

 As an enterprise customer you will be given access to the full package repository. In
 this case it is necessary to add the credentials to the repository to the system. The
 following listing shows how this works:

 $ version=16 # available: 15 16 17
 $ username="YOUR_LOGIN"
 $ password="YOUR_PASSWORD"

 # RedHat/CentOS
 $ sudo tee /etc/yum.repos.d/cybertec-pg$version.repo <<EOF
 [cybertec_pg$version]
 name=CYBERTEC PostgreSQL $version for RHEL/CentOS \$releasever - \$basearch
 baseurl=https://repository.cybertec.at/pgee/$version/redhat/\$releasever/\$basearch
 gpgkey=https://repository.cybertec.at/assets/cybertec-rpm.asc
 username=$username
 password=$password
 enabled=1
 EOF

 6

 STEP 4: INSTALL PGEE FROM THE REPOSITORY

 Once the repositories have been conûgured we can move forward and install the
 desired PGEE packages. In this example we only install the server. However,

 $ sudo yum install -y postgresql16-ee-server
 CYBERTEC PostgreSQL 16 for RHEL/CentOS 9 - x86_64

 699 kB/s | 226 kB 00:00
 Dependencies resolved.
 ==
 Package Arch… Version …

 ==
 Installing:
 postgresql16-ee-server x86_64 16.4-EE~demo.rhel9.1 …

 Installing dependencies:
 libicu x86_64 67.1-9.el9 …
 lz4 x86_64 1.9.3-5.el9 …
 postgresql16-ee x86_64 16.4-EE~demo.rhel9.1 …
 postgresql16-ee-libs x86_64 16.4-EE~demo.rhel9.1 …

 Transaction Summary
 ==
 Install 5 Packages

 Total download size: 18 M
 Installed size: 72 M
 Downloading Packages:
 (1/5): lz4-1.9.3-5.el9.x86_64.rpm …
 (2/5): postgresql16-ee-libs-16.4-EE~demo.rhel9.1.x86_64.rpm …
 (3/5): postgresql16-ee-16.4-EE~demo.rhel9.1.x86_64.rpm …
 (4/5): libicu-67.1-9.el9.x86_64.rpm
 (5/5): postgresql16-ee-server-16.4-EE~demo.rhel9.1.x86_64.rpm …
 --
 Total 9.6 MB/s | 18 MB 00:01
 CYBERTEC PostgreSQL 16 for RHEL/CentOS 9 - x86_64

 27 kB/s | 3.1 kB 00:00
 Importing GPG key 0x2D1B5F59:
 Userid : "Cybertec International (Software Signing Key)

 <build@cybertec.at>"
 Fingerprint: FCFF 012F 4B39 9019 1352 BB03 AA6F 3CC1 2D1B 5F59
 From : https://repository.cybertec.at/assets/cybertec-rpm.asc

 Key imported successfully
 Running transaction check
 Transaction check succeeded.
 Running transaction test
 Transaction test succeeded.
 Running transaction

 Preparing : 1/1
 Installing : postgresql16-ee-libs-16.4-EE~demo.rhel9.1.x86_64 1/5
 Running scriptlet: postgresql16-ee-libs-16.4-EE~demo.rhel9.1.x86_64 1/5
 Installing : libicu-67.1-9.el9.x86_64 2/5
 Installing : lz4-1.9.3-5.el9.x86_64 3/5
 Installing : postgresql16-ee-16.4-EE~demo.rhel9.1.x86_64 4/5
 Running scriptlet: postgresql16-ee-16.4-EE~demo.rhel9.1.x86_64 4/5
 Running scriptlet: postgresql16-ee-server-16.4-EE~demo.rhel9.1.x86_64 5/5

 7

 Installing : postgresql16-ee-server-16.4-EE~demo.rhel9.1.x86_64 5/5
 Running scriptlet: postgresql16-ee-server-16.4-EE~demo.rhel9.1.x86_64 5/5
 Verifying : libicu-67.1-9.el9.x86_64 1/5
 Verifying : lz4-1.9.3-5.el9.x86_64 2/5
 Verifying : postgresql16-ee-16.4-EE~demo.rhel9.1.x86_64 3/5
 Verifying : postgresql16-ee-libs-16.4-EE~demo.rhel9.1.x86_64 4/5
 Verifying : postgresql16-ee-server-16.4-EE~demo.rhel9.1.x86_64 5/5

 Installed:
 libicu-67.1-9.el9.x86_64
 lz4-1.9.3-5.el9.x86_64
 postgresql16-ee-16.4-EE~demo.rhel9.1.x86_64
 postgresql16-ee-libs-16.4-EE~demo.rhel9.1.x86_64
 postgresql16-ee-server-16.4-EE~demo.rhel9.1.x86_64

 Complete!

 Congratulations. You are now ready to deploy PGEE on your system.

 8

 STEP 5: CREATING SAMPLE KEYS

 PGEE is easy to install. One of the core features of PGEE is to provide TDE (=
 Transparent Data Encryption). This means that two things have to be taken care of:

 ● During instance creation a key has to be provided
 ● During startup the same key has to be provided

 For a quick and dirty test, we can simply generate keys and use them for PGEE. Here
 is one way to do it:

 $ sudo -u postgres -i
 $ version=16
 $ PATH=/usr/pgsql-$version/bin:$PATH
 $ KEY=$(dd if=/dev/random bs=1k count=1 | md5sum - | cut -d ' ' -f 1)
 1+0 records in
 1+0 records out
 1024 bytes (1.0 kB, 1.0 KiB) copied, 7.9108e-05 s, 12.9 MB/s

 The $KEY variable will contain a key which will be used to handle encryption.

 In a real world deployment make sure you are using the CYBERTEC key management
 tool which is described later in this document to manage keys safely.

 9

 STEP 7: CREATING THE DATABASE INSTANCE

 The difference between a normal installation and an encrypted installation is the
 necessity to tell PGEE how to obtain a key. The -K option allows us to pass a script to
 the server which handles the key:

 $ initdb -D /var/lib/pgsql/$version/data -k -K "echo $KEY"
 The files belonging to this database system will be owned by user "postgres".
 This user must also own the server process.

 The database cluster will be initialized with locale "C.utf8".
 The default database encoding has accordingly been set to "UTF8".
 The default text search configuration will be set to "english".

 Data page checksums are enabled.
 Data encryption is enabled.

 fixing permissions on existing directory /var/lib/pgsql/16/data ... ok
 creating subdirectories ... ok
 selecting dynamic shared memory implementation ... posix
 selecting default max_connections ... 100
 selecting default shared_buffers ... 128MB
 selecting default time zone ... UTC
 creating configuration files ... ok
 running bootstrap script ... ok
 performing post-bootstrap initialization ... ok
 syncing data to disk ... ok

 initdb: warning: enabling "trust" authentication for local connections
 initdb: hint: You can change this by editing pg_hba.conf or using the

 option -A, or --auth-local and --auth-host, the next time
 you run initdb.

 Success. You can now start the database server using:

 pg_ctl -D /var/lib/pgsql/16/data -l logfile start

 Mind the <Data encryption is enabled= line - it reveals that we are on the right path
 and encryption is working.

 10

 STEP 8: STARTING YOUR PGEE INSTANCE

 In the next step we can start the server. There are two ways to do it:

 STARTING PGEE MANUALLY

 Just like any version of PostgreSQL, PGEE can be started manually. The following
 command shows how this works:

 $ pg_ctl -D /var/lib/pgsql/$version/data start
 waiting for server to start....2024-11-02 14:04:30.393 UTC [311] LOG:
 redirecting log output to logging collector

 process
 2024-11-02 14:04:30.393 UTC [311] HINT: Future log output

 will appear in directory "log".
 done

 server started

 Note that $version is a placeholder for your version of PGEE. You can either
 hardcode your desired version or use the environment variable we have set in the
 previous section.

 STARTING PGEE USING SYSTEMD

 In most cases it is more desirable to start PGEE through systemd. The following two
 commands will enable PGEE and start the server:

 $ sudo systemctl enable postgresql-16
 $ sudo systemctl start postgresql-16

 Note that PGEE is a drop-in replacement for vanilla PostgreSQL and thus the process
 does not differ at all from any other service.

 11

 STEP 9: VERIFYING ENCRYPTION

 Finally we can verify that encryption is indeed on and working:

 $ psql
 psql (16.4 EE 1.3.7, server 16.4 EE 1.3.7)
 Type "help" for help.

 postgres=# SHOW data_encryption;
 data_encryption

 on

 (1 row)

 12

 MANAGING KEY INTEGRATION
 PGEE integrates with every keystore out there. Every time the key is needed it is
 automatically fetched using a method of your choice which includes but is not
 limited to:

 ● Command line prompt (for test purposes only)
 ● Local ûles (not recommended, test purposes only)
 ● Shell output (not recommend)
 ● CYBERTEC pgee_key_manager

 ○ Recommended solutions
 ○ Integrates securely with most KSMs
 ○ Fully supported by CYBERTEC

 13

 CYBERTEC PGEE KEY MANAGER

 The PGEE key manager avoids keys being leaked. Often database solutions offering
 Transparent Data Encryption (TDE) allow the key to be leaked on the command line.

 This is not so with PGEE. We provide a key management tool which fetches the key
 securely from any location and passes this vital piece of information on to PGEE:

 ● Without logging the key
 ● Without exposing the key to the administrators
 ● Without leaking information
 ● Without violating security policies

 The pgee_key_manager works as follows:

 ● Fetch the key from a location of your choice
 ● Pass the key safely to PGEE
 ● Ensure the correct context auf execution

 ○ Keys can only be obtained in the right content
 ○ Not key leakages on the command line

 Here is how it works:

 ./pgee_key_manager \
 -command="echo $(openssl rand -hex 16)" -KeyPath=key.txt

 This utility has been executed in the wrong security context.
 The incident will be reported.

 The key manager can be extended and therefore allows for superior üexibility and
 integration.

 14

 UPGRADING FROM POSTGRESQL TO PGEE
 If you are already using PostgreSQL (community edition) you can easily transition to
 PGEE without much effort. A handful of steps are needed to make the transition to
 PGEE and upgrade to the latest version at the same time.

 STEP 1: MAKE SURE POSTGRESQL AND PGEE ARE
 INSTALLED

 First of all we have to make sure that PostgreSQL and PGEE are installed. Both
 packages have to be around to smoothly transition from one database installation to
 the other.

 Note that this is done to ensure that you can upgrade within the same machine
 without downtime. Execute the following command:

 # rpm -qa | grep 'postgresql.*server'
 postgresql15-server-15.9-1PGDG.rhel9.x86_64
 postgresql16-ee-server-16.4-EE.rhel9.1.x86_64

 In this case we see PostgreSQL 15 (standard edition) as well as PGEE 16 . Once this
 has been veriûed we can move on to the next step and start the migration process.

 # sudo -u postgres /usr/pgsql-16/bin/initdb \
 -D /var/lib/pgsql/16/data/

 The files belonging to this database system will be owned by
 user "postgres".
 This user must also own the server process.
 ...

 15

 STEP 2: RUN UPGRADES TO TRANSITION TO PGEE

 Verifying your upgrade process is important, so for the sake of simplicity we have
 created a simple table. The goal is to see this table after our move to PGEE:

 postgres=# CREATE TABLE documents (doc text);
 CREATE TABLE
 postgres=# INSERT INTO documents

 VALUES ('My very important document');
 INSERT 0 1

 We use pg_upgrade to convert the vanilla cluster (in this example version 15) to
 PGEE 16.

 In this section the process will be explained step by step.

 16

 COPYING EXISTING DATA DURING UPGRADES

 # systemctl stop postgresql-15
 # sudo -u postgres -i
 $ /usr/pgsql-16/bin/pg_upgrade -b /usr/pgsql-15/bin \

 -d /var/lib/pgsql/15/data \
 -D /var/lib/pgsql/16/data

 Performing Consistency Checks

 Checking cluster versions ok
 Checking database user is the install user ok
 Checking database connection settings ok
 Checking for prepared transactions ok
 Checking for system-defined composite types in user tables ok
 Checking for reg* data types in user tables ok
 Checking for contrib/isn with bigint-passing mismatch ok
 Checking for incompatible "aclitem" data type in user tables ok
 Creating dump of global objects ok
 Creating dump of database schemas

 ok
 Checking for presence of required libraries ok
 Checking database user is the install user ok
 Checking for prepared transactions ok
 Checking for new cluster tablespace directories ok

 If pg_upgrade fails after this point, you must re-initdb the
 new cluster before continuing.

 Performing Upgrade

 Setting locale and encoding for new cluster ok
 Analyzing all rows in the new cluster ok
 Freezing all rows in the new cluster ok
 Deleting files from new pg_xact ok
 Copying old pg_xact to new server ok
 Setting oldest XID for new cluster ok
 Setting next transaction ID and epoch for new cluster ok
 Deleting files from new pg_multixact/offsets ok
 Copying old pg_multixact/offsets to new server ok
 Deleting files from new pg_multixact/members ok
 Copying old pg_multixact/members to new server ok
 Setting next multixact ID and offset for new cluster ok
 Resetting WAL archives ok
 Setting frozenxid and minmxid counters in new cluster ok
 Restoring global objects in the new cluster ok

 17

 Restoring database schemas in the new cluster
 ok

 Copying user relation files
 ok

 Setting next OID for new cluster ok
 Sync data directory to disk ok
 Creating script to delete old cluster ok
 Checking for extension updates ok

 Upgrade Complete

 Optimizer statistics are not transferred by pg_upgrade.
 Once you start the new server, consider running:

 /usr/pgsql-16/bin/vacuumdb --all --analyze-in-stages
 Running this script will delete the old cluster's data files:

 ./delete_old_cluster.sh

 UPGRADES WITHOUT COPYING THE DATA

 The problem with the approach you have just seen is that it will copy all the data. In
 case of a large database deployment (e.g. many TB) this process takes a lot of time
 and space. The alternative is to use the link " -k " option which creates hard links for
 the data ûles used by PGEE.

 Here is how it works:

 # sudo -u postgres -i
 $ /usr/pgsql-16/bin/pg_upgrade -b /usr/pgsql-15/bin \

 -d /var/lib/pgsql/15/data \
 -D /var/lib/pgsql/16/data -k

 Performing Consistency Checks

 Checking cluster versions ok
 Checking database user is the install user ok
 Checking database connection settings ok
 ...
 Checking for prepared transactions ok
 Checking for new cluster tablespace directories ok

 If pg_upgrade fails after this point, you must re-initdb the
 new cluster before continuing.

 Performing Upgrade

 18

 Setting locale and encoding for new cluster ok
 Analyzing all rows in the new cluster ok
 ...
 Restoring global objects in the new cluster ok
 Restoring database schemas in the new cluster

 ok
 Adding ".old" suffix to old global/pg_control ok

 If you want to start the old cluster, you will need to remove
 the ".old" suffix from
 /var/lib/pgsql/15/data/global/pg_control.old.
 Because "link" mode was used, the old cluster cannot be safely
 started once the new cluster has been started.
 Linking user relation files

 ok
 Setting next OID for new cluster ok
 Sync data directory to disk ok
 Creating script to delete old cluster ok
 Checking for extension updates ok

 Upgrade Complete

 Optimizer statistics are not transferred by pg_upgrade.
 Once you start the new server, consider running:

 /usr/pgsql-16/bin/vacuumdb --all --analyze-in-stages
 Running this script will delete the old cluster's data files:

 ./delete_old_cluster.sh

 You can expect this process to ûnish really quickly (usually within seconds).

 19

 VERIFY THE UPGRADE

 Let us verify the installation:

 # sudo -u postgres psql
 psql (16.4 EE 1.3.7)
 Type "help" for help.

 postgres=# \dt
 List of relations

 Schema | Name | Type | Owner
 --------+-----------+-------+----------
 public | documents | table | postgres

 (1 row)

 postgres=# SELECT * FROM documents;
 doc

 My very important document

 (1 row)

 Voila, your PGEE deployment has been completed successfully.
 At this point, the instance is running PGEE 16 and can be used by clients. Since we
 used pg_upgrade , which just copied the data ûles without changing them, the new
 instance is not encrypted yet. We use repl_proxy to encrypt the data in a second
 step.

 20

 STEP 3: ENCRYPTING YOUR PGEE INSTALLATION

 Encrypting an existing database in PGEE is done by invoking a command called
 repl_proxy . It can easily be installed and will handle all replication and encryption
 / decryption related operations:

 The following command installed the PGEE replication proxy:

 # sudo yum install repl_proxy

 Under the hood the replication proxy will attach to the PostgreSQL WAL and stream
 the WAL to the desired systems. It is therefore a good idea to create a user which is
 explicitly used for replication:

 # sudo -u postgres psql
 postgres=# CREATE USER replicator REPLICATION PASSWORD 'repl';
 CREATE ROLE

 Note that we want to use an existing database and encrypt it on the üy. Therefore we
 can quickly create a key (for demo purposes):

 # KEY=$(dd if=/dev/random bs=1k count=1 | md5sum - \
 | cut -d ' ' -f 1)

 1+0 records in
 1+0 records out
 1024 bytes (1.0 kB, 1.0 KiB) copied, 0.000334868 s, 3.1 MB/s

 In real life we would of course hook up to a real KMS such as Keycloak, Kubernetes
 secrets or something along those lines.

 21

 STARTING THE REPLICATION PROXY

 Once the replication proxy is installed and the key has been created we can start the
 proxy.

 The syntax of the tool is as follows:

 # repl_proxy --help
 repl_proxy is a tool to modify data during replication.

 Usage:
 repl_proxy [OPTION]...

 Options:
 -h, --master-host=HOSTNAME connect to master on this

 host (default: "local socket")
 -p, --master-port=PORT connect to master on this

 port (default: "5432")
 -H, --proxy-host=HOSTNAME run proxy on this host

 (default: "localhost")
 -P, --proxy-port=PORT run proxy on this port

 (default "5433")
 -K, --encryption-key-command=COMMAND

 command that returns
 encryption key

 -k, --decryption-key-command=COMMAND
 command that returns
 decryption key

 -v, --verbose output additional debugging
 information

 -?, --help show this help, then exit

 Again, keep in mind: Normally you would use the CYBERTEC key management tool to
 secure key creation and use it as part of the -K command line option:

 # sudo -u postgres repl_proxy -K "echo $KEY" &
 repl_proxy: Starting socket on port 5433

 In the next step we create a cluster to replicate our database into, encrypting
 everything on the way.

 The trick here is: Normally pg_basebackup connects to the primary and streams the
 WAL. To encrypt an instance, however, we connect directly to the replication proxy
 and stream from there:

 22

 # sudo -u postgres pg_basebackup -h localhost -p 5433 \
 -U replicator -D /var/lib/pgsql/16/encr --verbose

 Password: repl
 pg_basebackup: initiating base backup, waiting for checkpoint
 to complete
 pg_basebackup: checkpoint completed
 pg_basebackup: write-ahead log start point: 0/9000028 on
 timeline 1
 pg_basebackup: starting background WAL receiver
 pg_basebackup: created temporary replication slot
 "pg_basebackup_5836"
 pg_basebackup: write-ahead log end point: 0/9000100
 pg_basebackup: waiting for background process to finish
 streaming ...
 pg_basebackup: syncing data to disk ...
 pg_basebackup: renaming backup_manifest.tmp to backup_manifest
 pg_basebackup: base backup completed

 Finally we record the method to handle the encryption key
 (encryption_key_command) in postgresql.conf:

 # echo "encryption_key_command = 'echo $KEY'" >>
 /var/lib/pgsql/16/encr/postgresql.conf

 After this process the replication proxy is not needed anymore as it is has its job. We
 can bring it back to the foreground and stop it:
 Kill repl_proxy:

 # fg
 sudo -u postgres /usr/pgsql-16/bin/repl_proxy -K "echo $KEY"
 ̂C
 repl_proxy: Stopping server.

 All there is left to do is to stop the old and start our freshly encrypted instance:

 # sudo -u postgres /usr/pgsql-16/bin/pg_ctl \
 -D /var/lib/pgsql/16/data stop

 # sudo -u postgres /usr/pgsql-16/bin/pg_ctl \
 -D /var/lib/pgsql/16/encr start

 Let us verify our instance.

 23

 STEP 4: VERIFYING YOUR INSTALLATION

 The encrypted PGEE instance has been started on port 5434. We can already
 connect to this port and verify the content of the database:

 # sudo -u postgres psql
 psql (16.4 EE 1.3.7)
 Type "help" for help.

 postgres=# \dt
 List of relations

 Schema | Name | Type | Owner
 --------+-----------+-------+----------
 public | documents | table | postgres

 (1 row)

 postgres=# SELECT * FROM documents;
 doc

 My very important document

 (1 row)

 postgres=# SHOW data_encryption;
 data_encryption

 on

 (1 row)

 As you can see the data is there and PostgreSQL shows that encryption has been
 enabled.

 24

 SUPPORT AND GETTING HELP

 REQUESTING HELP

 Thank you for using CYBERTEC PGEE and thank you for being our customer.
 Your feedback is important to us and we are looking forward to hearing from you.
 If you are facing any issues or technical questions please reach out to our technical
 team and make use of our 24x7 support and ticketing system.

 CYBERTEC Support Porta l

 Our consultants are eager to help you with any technical and business related
 issues.

 25

https://www.cybertec-postgresql.com/en/services/postgresql-support/

 CYBERTEC PostgreSQL
 International (HQ)
 Gröhrmühlgasse 26
 2700 Wiener Neustadt
 Austria
 Phone: +43 (0)2622 93022-0
 oýce@cybertec.at

 CYBERTEC PostgreSQL Switzerland
 Bahnhofstraße 10
 8001 Zürich
 Switzerland
 Phone: +41 43 456 2684
 swiss@cybertec-postgresql.com

 CYBERTEC PostgreSQL Nordic
 Fahle Oýce
 Tartu mnt 84a-M302
 10112 Tallinn
 Estonia
 Phone: +372 712 3013
 nordic@cybertec-postgresql.com

 CYBERTEC PostgreSQL Poland
 Aleje Jerozolimskie 93
 HubHub Nowogrodzka Square, 2nd
 üoor
 02-001 Warsaw
 Poland
 poland@cybertec-postgresql.com

 CYBERTEC PostgreSQL South
 America
 Misiones 1486
 oûcina 301
 11000 Montevideo
 Uruguay
 latam@cybertec-postgresql.com

 CYBERTEC PostgreSQL South
 Africa
 No. 26, Cambridge Oýce Park
 5 Bauhinia Street, Highveld Techno
 Park
 0046 Centurion
 South Africa
 Phone: +27(0)012 881 1911
 africa@cybertec-postgresql.com

 26

