

CYBERTEC PGEE
INSTALLATION GUIDE FOR REDHAT

Date: 2024-11-09
Publisher: CYBERTEC PGEE team

TABLE OF CONTENTS

TABLE OF CONTENTS... 2
PGEE: COMPREHENSIVE DATABASE SECURITY.. 3

SUPPORTED PGEE MAJOR VERSIONS AND OPERATING SYSTEMS....................4

INSTALLATION GUIDE..5
STEP 1: ACCESS THE RPM REPOSITORY..5
STEP 2: DISABLE STANDARD POSTGRESQL...5
STEP 3: SETTING UP THE REPOSITORY... 6

INSTALLING THE DEMO REPOSITORIES..6
ENABLING THE ENTERPRISE REPOSITORIES.. 6

STEP 4: INSTALL PGEE FROM THE REPOSITORY..7
STEP 5: CREATING SAMPLE KEYS..9
STEP 6: CREATING THE DATABASE INSTANCE.. 10
STEP 7: STARTING YOUR PGEE INSTANCE...11

STARTING PGEE MANUALLY... 11
STARTING PGEE USING SYSTEMD.. 11

STEP 8: VERIFYING ENCRYPTION.. 12

MANAGING KEY INTEGRATION..13
CYBERTEC PGEE KEY MANAGER..14

UPGRADING FROM POSTGRESQL TO PGEE... 15
STEP 1: MAKE SURE POSTGRESQL AND PGEE ARE INSTALLED....................... 15
STEP 2: RUN UPGRADES TO TRANSITION TO PGEE... 16

COPYING EXISTING DATA DURING UPGRADES... 17
UPGRADES WITHOUT COPYING THE DATA... 18
VERIFY THE UPGRADE.. 20

STEP 3: ENCRYPTING YOUR PGEE INSTALLATION... 21
STARTING THE REPLICATION PROXY... 22

STEP 4: VERIFYING YOUR INSTALLATION.. 24

SUPPORT AND GETTING HELP.. 25
REQUESTING HELP...25

VERSION HISTORY... 27

2

PGEE: COMPREHENSIVE DATABASE SECURITY
CYBERTEC PostgreSQL Enterprise Edition (PGEE) is a CYBERTEC product which has
been designed for enterprise-grade security in critical environments that require
additional security as well as regular auditing. This solution focus heavily on
compliance and business critical workloads for various industries, including but not
limited to:

● Banking and financial services
● Governments and defense
● Critical national infrastructure
● Business-critical missions

Ensuring security is key and therefore our first priority is to provide customers with
encryption at every level while providing cutting edge performance.

3

PGEE offers comprehensive database security and provides the necessary tooling to
enable enterprise success, focusing on these key aspects:

● Encryption at every level
● Secure software development
● Auditing and certification

This document describes how PGEE can be installed on RedHat/RPM based
operating systems (RHEL, Rocky Linux, etc.). The following operating systems are
currently available and supported:

SUPPORTED PGEE MAJOR VERSIONS AND OPERATING
SYSTEMS

● PGEE 17 based on PostgreSQL 17
● PGEE 16 based on PostgreSQL 16
● PGEE 15 based on PostgreSQL 15
● PGEE 14 based on PostgreSQL 14

● RedHat RHEL 9 and derivatives, x86_64
● RedHat RHEL 8 and derivatives, x86_64
● SUSE SLES 15, x86_64

Additional operating systems and CPU architectures are supported on request.

4

INSTALLATION GUIDE
This section contains a detailed step-by-step guide. After the CYBERTEC team has
opened the repositories for you, follow the next steps as described in this document:

STEP 1: ACCESS THE RPM REPOSITORY

The RPM repositories can be found here:

https://repository.cybertec.at

Additional instructions can be found in the repository.

STEP 2: DISABLE STANDARD POSTGRESQL

Before installing PGEE we have to disable the onboard PostgreSQL packages to
ensure that only the PGEE service is running.

Execute the following command:

$ sudo dnf module disable -y postgresql
AlmaLinux 9 - AppStream 7.5 kB/s | 4.2 kB 00:00
AlmaLinux 9 - AppStream 9.8 MB/s | 16 MB 00:01
AlmaLinux 9 - BaseOS 9.4 kB/s | 3.8 kB 00:00
AlmaLinux 9 - BaseOS 9.9 MB/s | 17 MB 00:01
AlmaLinux 9 - Extras 8.0 kB/s | 3.3 kB 00:00
AlmaLinux 9 - Extras 39 kB/s | 20 kB 00:00
Extra Packages for Enterprise Linux 9 - x86_64
 247 kB/s | 46 kB 00:00
Extra Packages for Enterprise Linux 9 - x86_64
 11 MB/s | 23 MB 00:02
Dependencies resolved.
==
 Package Architecture Version Repository Size
==
Disabling modules:
 postgresql

Transaction Summary
==
Complete!

Once this is done we can proceed with the installation.

5

STEP 3: SETTING UP THE REPOSITORY

In the next step we have to enable the PGEE repository and make sure we have
access to the packages.

Two options are available:

● PGEE demo version, limited to 1 GB per table
● PGEE full version

INSTALLING THE DEMO REPOSITORIES

The demo version can be installed as follows:

$ version=16
$ sudo tee /etc/yum.repos.d/cybertec-pg$version.repo <<EOF
[cybertec_pg$version]
name=CYBERTEC PostgreSQL $version for RHEL/CentOS \$releasever - \$basearch
baseurl=https://repository.cybertec.at/public/$version/redhat/\$releasever/\$basearch
gpgkey=https://repository.cybertec.at/assets/cybertec-rpm.asc
enabled=1
EOF

ENABLING THE ENTERPRISE REPOSITORIES

As an enterprise customer you will be given access to the full package repository. In
this case it is necessary to add the credentials to the repository to the system. The
following listing shows how this works:

$ version=16 # available: 15 16 17
$ username="YOUR_LOGIN"
$ password="YOUR_PASSWORD"

RedHat/CentOS
$ sudo tee /etc/yum.repos.d/cybertec-pg$version.repo <<EOF
[cybertec_pg$version]
name=CYBERTEC PostgreSQL $version for RHEL/CentOS \$releasever - \$basearch
baseurl=https://repository.cybertec.at/pgee/$version/redhat/\$releasever/\$basearch
gpgkey=https://repository.cybertec.at/assets/cybertec-rpm.asc
username=$username
password=$password
enabled=1
EOF

6

STEP 4: INSTALL PGEE FROM THE REPOSITORY

Once the repositories have been configured we can move forward and install the
desired PGEE packages. In this example we only install the server. However,

$ sudo yum install -y postgresql16-ee-server
CYBERTEC PostgreSQL 16 for RHEL/CentOS 9 - x86_64
 699 kB/s | 226 kB 00:00
Dependencies resolved.
==
 Package Arch… Version …
==
Installing:
 postgresql16-ee-server x86_64 16.4-EE~demo.rhel9.1 …
Installing dependencies:
 libicu x86_64 67.1-9.el9 …
 lz4 x86_64 1.9.3-5.el9 …
 postgresql16-ee x86_64 16.4-EE~demo.rhel9.1 …
 postgresql16-ee-libs x86_64 16.4-EE~demo.rhel9.1 …
Transaction Summary
==
Install 5 Packages

Total download size: 18 M
Installed size: 72 M
Downloading Packages:
(1/5): lz4-1.9.3-5.el9.x86_64.rpm …
(2/5): postgresql16-ee-libs-16.4-EE~demo.rhel9.1.x86_64.rpm …
(3/5): postgresql16-ee-16.4-EE~demo.rhel9.1.x86_64.rpm …
(4/5): libicu-67.1-9.el9.x86_64.rpm
(5/5): postgresql16-ee-server-16.4-EE~demo.rhel9.1.x86_64.rpm …
--
Total 9.6 MB/s | 18 MB 00:01
CYBERTEC PostgreSQL 16 for RHEL/CentOS 9 - x86_64
 27 kB/s | 3.1 kB 00:00
Importing GPG key 0x2D1B5F59:
Userid : "Cybertec International (Software Signing Key)
 <build@cybertec.at>"
 Fingerprint: FCFF 012F 4B39 9019 1352 BB03 AA6F 3CC1 2D1B 5F59
 From : https://repository.cybertec.at/assets/cybertec-rpm.asc
Key imported successfully
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
 Preparing : 1/1
 Installing : postgresql16-ee-libs-16.4-EE~demo.rhel9.1.x86_64 1/5
 Running scriptlet: postgresql16-ee-libs-16.4-EE~demo.rhel9.1.x86_64 1/5
 Installing : libicu-67.1-9.el9.x86_64 2/5
 Installing : lz4-1.9.3-5.el9.x86_64 3/5
 Installing : postgresql16-ee-16.4-EE~demo.rhel9.1.x86_64 4/5
 Running scriptlet: postgresql16-ee-16.4-EE~demo.rhel9.1.x86_64 4/5
 Running scriptlet: postgresql16-ee-server-16.4-EE~demo.rhel9.1.x86_64 5/5

7

 Installing : postgresql16-ee-server-16.4-EE~demo.rhel9.1.x86_64 5/5
 Running scriptlet: postgresql16-ee-server-16.4-EE~demo.rhel9.1.x86_64 5/5
 Verifying : libicu-67.1-9.el9.x86_64 1/5
 Verifying : lz4-1.9.3-5.el9.x86_64 2/5
 Verifying : postgresql16-ee-16.4-EE~demo.rhel9.1.x86_64 3/5
 Verifying : postgresql16-ee-libs-16.4-EE~demo.rhel9.1.x86_64 4/5
 Verifying : postgresql16-ee-server-16.4-EE~demo.rhel9.1.x86_64 5/5

Installed:
 libicu-67.1-9.el9.x86_64
 lz4-1.9.3-5.el9.x86_64
 postgresql16-ee-16.4-EE~demo.rhel9.1.x86_64
 postgresql16-ee-libs-16.4-EE~demo.rhel9.1.x86_64
 postgresql16-ee-server-16.4-EE~demo.rhel9.1.x86_64

Complete!

Congratulations. You are now ready to deploy PGEE on your system.

8

STEP 5: CREATING SAMPLE KEYS

PGEE is easy to install. One of the core features of PGEE is to provide TDE (=
Transparent Data Encryption). This means that two things have to be taken care of:

● During instance creation a key has to be provided
● During startup the same key has to be provided

For a quick and dirty test, we can simply generate keys and use them for PGEE. Here
is one way to do it:

$ sudo -u postgres -i
$ version=16
$ PATH=/usr/pgsql-$version/bin:$PATH
$ KEY=$(dd if=/dev/random bs=1k count=1 | md5sum - | cut -d ' ' -f 1)
1+0 records in
1+0 records out
1024 bytes (1.0 kB, 1.0 KiB) copied, 7.9108e-05 s, 12.9 MB/s

The $KEY variable will contain a key which will be used to handle encryption.

In a real world deployment make sure you are using the CYBERTEC key management
tool which is described later in this document to manage keys safely.

9

STEP 6: CREATING THE DATABASE INSTANCE

The difference between a normal installation and an encrypted installation is the
necessity to tell PGEE how to obtain a key. The -K option allows us to pass a script to
the server which handles the key:

$ initdb -D /var/lib/pgsql/$version/data -k -K "echo $KEY"
The files belonging to this database system will be owned by user "postgres".
This user must also own the server process.

The database cluster will be initialized with locale "C.utf8".
The default database encoding has accordingly been set to "UTF8".
The default text search configuration will be set to "english".

Data page checksums are enabled.
Data encryption is enabled.

fixing permissions on existing directory /var/lib/pgsql/16/data ... ok
creating subdirectories ... ok
selecting dynamic shared memory implementation ... posix
selecting default max_connections ... 100
selecting default shared_buffers ... 128MB
selecting default time zone ... UTC
creating configuration files ... ok
running bootstrap script ... ok
performing post-bootstrap initialization ... ok
syncing data to disk ... ok

initdb: warning: enabling "trust" authentication for local connections
initdb: hint: You can change this by editing pg_hba.conf or using the
 option -A, or --auth-local and --auth-host, the next time
 you run initdb.

Success. You can now start the database server using:

 pg_ctl -D /var/lib/pgsql/16/data -l logfile start

Mind the “Data encryption is enabled” line - it reveals that we are on the right path
and encryption is working.

10

STEP 7: STARTING YOUR PGEE INSTANCE

In the next step we can start the server. There are two ways to do it:

STARTING PGEE MANUALLY

Just like any version of PostgreSQL, PGEE can be started manually. The following
command shows how this works:

$ pg_ctl -D /var/lib/pgsql/$version/data start
waiting for server to start....2024-11-02 14:04:30.393 UTC [311] LOG:
redirecting log output to logging collector
 process
2024-11-02 14:04:30.393 UTC [311] HINT: Future log output
 will appear in directory "log".
 done
server started

Note that $version is a placeholder for your version of PGEE. You can either
hardcode your desired version or use the environment variable we have set in the
previous section.

STARTING PGEE USING SYSTEMD

In most cases it is more desirable to start PGEE through systemd. The following two
commands will enable PGEE and start the server:

$ sudo systemctl enable postgresql-16
$ sudo systemctl start postgresql-16

Note that PGEE is a drop-in replacement for vanilla PostgreSQL and thus the process
does not differ at all from any other service.

11

STEP 8: VERIFYING ENCRYPTION

Finally we can verify that encryption is indeed on and working:

$ psql
psql (16.4 EE 1.3.7, server 16.4 EE 1.3.7)
Type "help" for help.

postgres=# SHOW data_encryption;
 data_encryption

 on
(1 row)

12

MANAGING KEY INTEGRATION
PGEE integrates with every keystore out there. Every time the key is needed it is
automatically fetched using a method of your choice which includes but is not
limited to:

● Command line prompt (for test purposes only)
● Local files (not recommended, test purposes only)
● Shell output (not recommend)
● CYBERTEC pgee_key_manager

○ Recommended solutions
○ Integrates securely with most KSMs
○ Fully supported by CYBERTEC

13

CYBERTEC PGEE KEY MANAGER

The PGEE key manager avoids keys being leaked. Often database solutions offering
Transparent Data Encryption (TDE) allow the key to be leaked on the command line.

This is not so with PGEE. We provide a key management tool which fetches the key
securely from any location and passes this vital piece of information on to PGEE:

● Without logging the key
● Without exposing the key to the administrators
● Without leaking information
● Without violating security policies

The pgee_key_manager works as follows:

● Fetch the key from a location of your choice
● Pass the key safely to PGEE
● Ensure the correct context auf execution

○ Keys can only be obtained in the right content
○ Not key leakages on the command line

Here is how it works:

./pgee_key_manager \

-command="echo $(openssl rand -hex 16)"
-KeyPath=key.txt
This utility has been executed in the wrong security context.
The incident will be reported.

The key manager can be extended and therefore allows for superior flexibility and
integration.

14

15

UPGRADING FROM POSTGRESQL TO PGEE
If you are already using PostgreSQL (community edition) you can easily transition to
PGEE without much effort. A handful of steps are needed to make the transition to
PGEE and upgrade to the latest version at the same time.

STEP 1: MAKE SURE POSTGRESQL AND PGEE ARE
INSTALLED

First of all we have to make sure that PostgreSQL and PGEE are installed. Both
packages have to be around to smoothly transition from one database installation to
the other.

Note that this is done to ensure that you can upgrade within the same machine
without downtime. Execute the following command:

rpm -qa | grep 'postgresql.*server'
postgresql15-server-15.9-1PGDG.rhel9.x86_64
postgresql16-ee-server-16.4-EE.rhel9.1.x86_64

In this case we see PostgreSQL 15 (standard edition) as well as PGEE 16. Once this
has been verified we can move on to the next step and start the migration process.

sudo -u postgres /usr/pgsql-16/bin/initdb \

-D /var/lib/pgsql/16/data/
The files belonging to this database system will be owned by
user "postgres".
This user must also own the server process.
...

16

STEP 2: RUN UPGRADES TO TRANSITION TO PGEE

Verifying your upgrade process is important, so for the sake of simplicity we have
created a simple table. The goal is to see this table after our move to PGEE:

postgres=# CREATE TABLE documents (doc text);
CREATE TABLE
postgres=# INSERT INTO documents

VALUES ('My very important document');
INSERT 0 1

We use pg_upgrade to convert the vanilla cluster (in this example version 15) to
PGEE 16.

In this section the process will be explained step by step.

17

COPYING EXISTING DATA DURING UPGRADES

systemctl stop postgresql-15
sudo -u postgres -i
$ /usr/pgsql-16/bin/pg_upgrade -b /usr/pgsql-15/bin \
 -d /var/lib/pgsql/15/data \
 -D /var/lib/pgsql/16/data
Performing Consistency Checks

Checking cluster versions ok
Checking database user is the install user ok
Checking database connection settings ok
Checking for prepared transactions ok
Checking for system-defined composite types in user tables ok
Checking for reg* data types in user tables ok
Checking for contrib/isn with bigint-passing mismatch ok
Checking for incompatible "aclitem" data type in user tables ok
Creating dump of global objects ok
Creating dump of database schemas
 ok
Checking for presence of required libraries ok
Checking database user is the install user ok
Checking for prepared transactions ok
Checking for new cluster tablespace directories ok

If pg_upgrade fails after this point, you must re-initdb the
new cluster before continuing.

Performing Upgrade

Setting locale and encoding for new cluster ok
Analyzing all rows in the new cluster ok
Freezing all rows in the new cluster ok
Deleting files from new pg_xact ok
Copying old pg_xact to new server ok
Setting oldest XID for new cluster ok
Setting next transaction ID and epoch for new cluster ok
Deleting files from new pg_multixact/offsets ok
Copying old pg_multixact/offsets to new server ok
Deleting files from new pg_multixact/members ok
Copying old pg_multixact/members to new server ok
Setting next multixact ID and offset for new cluster ok
Resetting WAL archives ok
Setting frozenxid and minmxid counters in new cluster ok
Restoring global objects in the new cluster ok

18

Restoring database schemas in the new cluster
 ok
Copying user relation files
 ok
Setting next OID for new cluster ok
Sync data directory to disk ok
Creating script to delete old cluster ok
Checking for extension updates ok

Upgrade Complete

Optimizer statistics are not transferred by pg_upgrade.
Once you start the new server, consider running:
 /usr/pgsql-16/bin/vacuumdb --all --analyze-in-stages
Running this script will delete the old cluster's data files:
 ./delete_old_cluster.sh

UPGRADES WITHOUT COPYING THE DATA

The problem with the approach you have just seen is that it will copy all the data. In
case of a large database deployment (e.g. many TB) this process takes a lot of time
and space. The alternative is to use the link "-k" option which creates hard links for
the data files used by PGEE.

Here is how it works:

sudo -u postgres -i
$ /usr/pgsql-16/bin/pg_upgrade -b /usr/pgsql-15/bin \
 -d /var/lib/pgsql/15/data \
 -D /var/lib/pgsql/16/data -k
Performing Consistency Checks

Checking cluster versions ok
Checking database user is the install user ok
Checking database connection settings ok
...
Checking for prepared transactions ok
Checking for new cluster tablespace directories ok

If pg_upgrade fails after this point, you must re-initdb the
new cluster before continuing.

Performing Upgrade

19

Setting locale and encoding for new cluster ok
Analyzing all rows in the new cluster ok
...
Restoring global objects in the new cluster ok
Restoring database schemas in the new cluster
 ok
Adding ".old" suffix to old global/pg_control ok

If you want to start the old cluster, you will need to remove
the ".old" suffix from
/var/lib/pgsql/15/data/global/pg_control.old.
Because "link" mode was used, the old cluster cannot be safely
started once the new cluster has been started.
Linking user relation files
 ok
Setting next OID for new cluster ok
Sync data directory to disk ok
Creating script to delete old cluster ok
Checking for extension updates ok

Upgrade Complete

Optimizer statistics are not transferred by pg_upgrade.
Once you start the new server, consider running:
 /usr/pgsql-16/bin/vacuumdb --all --analyze-in-stages
Running this script will delete the old cluster's data files:
 ./delete_old_cluster.sh

You can expect this process to finish really quickly (usually within seconds).

20

VERIFY THE UPGRADE

Let us verify the installation:

sudo -u postgres psql
psql (16.4 EE 1.3.7)
Type "help" for help.

postgres=# \dt
 List of relations
 Schema | Name | Type | Owner
--------+-----------+-------+----------
 public | documents | table | postgres
(1 row)

postgres=# SELECT * FROM documents;
 doc

 My very important document
(1 row)

Voila, your PGEE deployment has been completed successfully.
At this point, the instance is running PGEE 16 and can be used by clients. Since we
used pg_upgrade, which just copied the data files without changing them, the new
instance is not encrypted yet. We use repl_proxy to encrypt the data in a second
step.

21

STEP 3: ENCRYPTING YOUR PGEE INSTALLATION

Encrypting an existing database in PGEE is done by invoking a command called
repl_proxy. It can easily be installed and will handle all replication and encryption
/ decryption related operations:

The following command installed the PGEE replication proxy:

sudo yum install repl_proxy

Under the hood the replication proxy will attach to the PostgreSQL WAL and stream
the WAL to the desired systems. It is therefore a good idea to create a user which is
explicitly used for replication:

sudo -u postgres psql
postgres=# CREATE USER replicator REPLICATION PASSWORD 'repl';
CREATE ROLE

Note that we want to use an existing database and encrypt it on the fly. Therefore we
can quickly create a key (for demo purposes):

KEY=$(dd if=/dev/random bs=1k count=1 | md5sum - \

| cut -d ' ' -f 1)
1+0 records in
1+0 records out
1024 bytes (1.0 kB, 1.0 KiB) copied, 0.000334868 s, 3.1 MB/s

In real life we would of course hook up to a real KMS such as Keycloak, Kubernetes
secrets or something along those lines.

22

STARTING THE REPLICATION PROXY

Once the replication proxy is installed and the key has been created we can start the
proxy.

The syntax of the tool is as follows:

repl_proxy --help
repl_proxy is a tool to modify data during replication.

Usage:
 repl_proxy [OPTION]...

Options:
 -h, --master-host=HOSTNAME connect to master on this

 host (default: "local socket")
 -p, --master-port=PORT connect to master on this

 port (default: "5432")
 -H, --proxy-host=HOSTNAME run proxy on this host

(default: "localhost")
 -P, --proxy-port=PORT run proxy on this port

(default "5433")
 -K, --encryption-key-command=COMMAND
 command that returns

encryption key
 -k, --decryption-key-command=COMMAND
 command that returns

decryption key
 -v, --verbose output additional debugging

information
 -?, --help show this help, then exit

Again, keep in mind: Normally you would use the CYBERTEC key management tool to
secure key creation and use it as part of the -K command line option:

sudo -u postgres repl_proxy -K "echo $KEY" &
repl_proxy: Starting socket on port 5433

In the next step we create a cluster to replicate our database into, encrypting
everything on the way.

The trick here is: Normally pg_basebackup connects to the primary and streams the
WAL. To encrypt an instance, however, we connect directly to the replication proxy
and stream from there:

23

sudo -u postgres pg_basebackup -h localhost -p 5433 \

 -U replicator -D /var/lib/pgsql/16/encr --verbose
Password: repl
pg_basebackup: initiating base backup, waiting for checkpoint
to complete
pg_basebackup: checkpoint completed
pg_basebackup: write-ahead log start point: 0/9000028 on
timeline 1
pg_basebackup: starting background WAL receiver
pg_basebackup: created temporary replication slot
"pg_basebackup_5836"
pg_basebackup: write-ahead log end point: 0/9000100
pg_basebackup: waiting for background process to finish
streaming ...
pg_basebackup: syncing data to disk ...
pg_basebackup: renaming backup_manifest.tmp to
backup_manifest
pg_basebackup: base backup completed

Finally we record the method to handle the encryption key
(encryption_key_command) in postgresql.conf:

echo "encryption_key_command = 'echo $KEY'" >>
/var/lib/pgsql/16/encr/postgresql.conf

After this process the replication proxy is not needed anymore as it is has its job. We
can bring it back to the foreground and stop it:
Kill repl_proxy:

fg
sudo -u postgres /usr/pgsql-16/bin/repl_proxy -K "echo $KEY"
^C
repl_proxy: Stopping server.

All there is left to do is to stop the old and start our freshly encrypted instance:

sudo -u postgres /usr/pgsql-16/bin/pg_ctl \

-D /var/lib/pgsql/16/data stop
sudo -u postgres /usr/pgsql-16/bin/pg_ctl \

-D /var/lib/pgsql/16/encr start

Let us verify our instance.

24

25

STEP 4: VERIFYING YOUR INSTALLATION

The encrypted PGEE instance has been started on port 5434. We can already
connect to this port and verify the content of the database:

sudo -u postgres psql
psql (16.4 EE 1.3.7)
Type "help" for help.

postgres=# \dt
 List of relations
 Schema | Name | Type | Owner
--------+-----------+-------+----------
 public | documents | table | postgres
(1 row)

postgres=# SELECT * FROM documents;
 doc

 My very important document
(1 row)

postgres=# SHOW data_encryption;
 data_encryption

 on
(1 row)

As you can see the data is there and PostgreSQL shows that encryption has been
enabled.

26

SUPPORT AND GETTING HELP

REQUESTING HELP

Thank you for using CYBERTEC PGEE and thank you for being our customer.
Your feedback is important to us and we are looking forward to hearing from you.
If you are facing any issues or technical questions please reach out to our technical
team and make use of our 24x7 support and ticketing system.

CYBERTEC Support Portal

Our consultants are eager to help you with any technical and business related
issues.

27

https://www.cybertec-postgresql.com/en/services/postgresql-support/

CYBERTEC PostgreSQL
International (HQ)
Gröhrmühlgasse 26
2700 Wiener Neustadt
Austria
Phone: +43 (0)2622 93022-0
office@cybertec.at

CYBERTEC PostgreSQL Switzerland
Bahnhofstraße 10
8001 Zürich
Switzerland
Phone: +41 43 456 2684
swiss@cybertec-postgresql.com

CYBERTEC PostgreSQL Nordic
Fahle Office
Tartu mnt 84a-M302
10112 Tallinn
Estonia
Phone: +372 712 3013
nordic@cybertec-postgresql.com

CYBERTEC PostgreSQL Poland
Aleje Jerozolimskie 93
HubHub Nowogrodzka Square, 2nd
floor
02-001 Warsaw
Poland
poland@cybertec-postgresql.com

CYBERTEC PostgreSQL South
America
Misiones 1486
oficina 301
11000 Montevideo
Uruguay
latam@cybertec-postgresql.com

CYBERTEC PostgreSQL South
Africa
No. 26, Cambridge Office Park
5 Bauhinia Street, Highveld Techno
Park
0046 Centurion
South Africa
Phone: +27(0)012 881 1911
africa@cybertec-postgresql.com

28

VERSION HISTORY

Version Effective Date Description Author Reviewed By Approved By

1.0 2024-11-09 Content written
Hans-Jürgen
Schönig

Raj Verma Christoph Berg

29

	
	TABLE OF CONTENTS
	PGEE: COMPREHENSIVE DATABASE SECURITY
	SUPPORTED PGEE MAJOR VERSIONS AND OPERATING SYSTEMS

	INSTALLATION GUIDE
	STEP 1: ACCESS THE RPM REPOSITORY
	STEP 2: DISABLE STANDARD POSTGRESQL
	STEP 3: SETTING UP THE REPOSITORY
	INSTALLING THE DEMO REPOSITORIES
	ENABLING THE ENTERPRISE REPOSITORIES

	STEP 4: INSTALL PGEE FROM THE REPOSITORY
	
	STEP 5: CREATING SAMPLE KEYS
	
	STEP 6: CREATING THE DATABASE INSTANCE
	
	STEP 7: STARTING YOUR PGEE INSTANCE
	STARTING PGEE MANUALLY
	STARTING PGEE USING SYSTEMD

	
	STEP 8: VERIFYING ENCRYPTION

	
	
	MANAGING KEY INTEGRATION
	CYBERTEC PGEE KEY MANAGER

	
	UPGRADING FROM POSTGRESQL TO PGEE
	STEP 1: MAKE SURE POSTGRESQL AND PGEE ARE INSTALLED
	
	STEP 2: RUN UPGRADES TO TRANSITION TO PGEE
	
	COPYING EXISTING DATA DURING UPGRADES
	UPGRADES WITHOUT COPYING THE DATA
	
	VERIFY THE UPGRADE

	
	STEP 3: ENCRYPTING YOUR PGEE INSTALLATION
	STARTING THE REPLICATION PROXY

	
	STEP 4: VERIFYING YOUR INSTALLATION

	SUPPORT AND GETTING HELP
	REQUESTING HELP

	VERSION HISTORY

